In the past two decades, short-term scheduling of multipurpose batch plants has received significant attention. Most scheduling problems are modeled using either state-task-network or resource-task-network(RTN) proces...In the past two decades, short-term scheduling of multipurpose batch plants has received significant attention. Most scheduling problems are modeled using either state-task-network or resource-task-network(RTN) process representation. In this paper, an improved mixed integer linear programming model for short-term schedul-ing of multipurpose batch plants under maximization of profit is proposed based on RTN representation and unit-specific events. To solve the model, a hybrid algorithm based on line-up competition algorithm and linear programming is presented. The proposed model and hybrid algorithm are applied to two benchmark examples in literature. The simulation results show that the proposed model and hybrid algorithm are effective for short-term scheduling of multipurpose batch plants.展开更多
In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integ...In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.展开更多
The performance of SBRs treating two kinds of wastewater(synthetic wastewater con- taining polyvinyl alcohol and effluent from a coke-plant wastewater treatment system)was investi- gated in this study,in order to exam...The performance of SBRs treating two kinds of wastewater(synthetic wastewater con- taining polyvinyl alcohol and effluent from a coke-plant wastewater treatment system)was investi- gated in this study,in order to examine the exact function of anaerobic portion in a conventional SBR.The set up of 4-or 8-hour anaerobic mixing period in a SBR's cycle did not benefit for PVA degradation.While an anaerobic reactor seeded with anaerobic sludge could partly hydrolyse and acidify PVA into readily-degradable intermediates.During the anaerobic fill period of an SBR treat- ing the effluent from a coke-plant wastewater treatment system,the organic concentration was re- duced to certain extent due to the adsorption of activated sludge and dilution of the mixed liquor from the previous cycle.Parts of readily-degradable organics in the influent were utilised by denitri- fiers as carbon source.The biomass in a conventional SBR was alternatively imposed to aerobic and anaerobic conditions in its operating cycle,the environmental conditions needed for anaerobic hy- drolization and acidification of refractory organics could not occur in such an SBR.展开更多
基金Supported by the National Natural Science Foundation of China(21376185)the Fundamental Research Funds for the Central Universities(WUT:2013-IV-032)
文摘In the past two decades, short-term scheduling of multipurpose batch plants has received significant attention. Most scheduling problems are modeled using either state-task-network or resource-task-network(RTN) process representation. In this paper, an improved mixed integer linear programming model for short-term schedul-ing of multipurpose batch plants under maximization of profit is proposed based on RTN representation and unit-specific events. To solve the model, a hybrid algorithm based on line-up competition algorithm and linear programming is presented. The proposed model and hybrid algorithm are applied to two benchmark examples in literature. The simulation results show that the proposed model and hybrid algorithm are effective for short-term scheduling of multipurpose batch plants.
基金Supported by the National 973 Program of China (No. G2000263).
文摘In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.
文摘The performance of SBRs treating two kinds of wastewater(synthetic wastewater con- taining polyvinyl alcohol and effluent from a coke-plant wastewater treatment system)was investi- gated in this study,in order to examine the exact function of anaerobic portion in a conventional SBR.The set up of 4-or 8-hour anaerobic mixing period in a SBR's cycle did not benefit for PVA degradation.While an anaerobic reactor seeded with anaerobic sludge could partly hydrolyse and acidify PVA into readily-degradable intermediates.During the anaerobic fill period of an SBR treat- ing the effluent from a coke-plant wastewater treatment system,the organic concentration was re- duced to certain extent due to the adsorption of activated sludge and dilution of the mixed liquor from the previous cycle.Parts of readily-degradable organics in the influent were utilised by denitri- fiers as carbon source.The biomass in a conventional SBR was alternatively imposed to aerobic and anaerobic conditions in its operating cycle,the environmental conditions needed for anaerobic hy- drolization and acidification of refractory organics could not occur in such an SBR.