An iterative (run-to-run) optimization method was presented for batch processes under input constraints. Generally it is very difficult to acquire an accurate mechanistic model for a batch process.Because support vect...An iterative (run-to-run) optimization method was presented for batch processes under input constraints. Generally it is very difficult to acquire an accurate mechanistic model for a batch process.Because support vector machine is powerful for the problems characterized by small samples,nonlinearity, high dimension and local minima, support vector regression models were developed for the end-point optimization of batch processes. Since there is no analytical way to find the optimal trajectory, an iterative method was used to exploit the repetitive nature of batch processes to determine the optimal operating policy. The optimization algorithm is proved convergent. The numerical simulation shows that the method can improve the process performance through iterations.展开更多
Efficiency of batch processing is becoming increasingly important for many modern commercial service centers, e.g., clusters and cloud computing datacenters. However, periodical resource contentions have become the ma...Efficiency of batch processing is becoming increasingly important for many modern commercial service centers, e.g., clusters and cloud computing datacenters. However, periodical resource contentions have become the major performance obstacles for concurrently running applications on mainstream CMP servers. I/O contention is such a kind of obstacle, which may impede both the co-running performance of batch jobs and the system throughput seriously. In this paper, a dynamic I/O-aware scheduling algorithm is proposed to lower the impacts of I/O contention and to enhance the co-running performance in batch processing. We set up our environment on an 8-socket, 64-core server in Dawning Linux Cluster. Fifteen workloads ranging from 8 jobs to 256 jobs are evaluated. Our experimental results show significant improvements on the throughputs of the workloads, which range from 7% to 431%. Meanwhile, noticeable improvements on the slowdown of workloads and the average runtime for each job can be achieved. These results show that a well-tuned dynamic I/O-aware scheduler is beneficial for batch-mode services. It can also enhance the resource utilization via throughput improvement on modern service platforms.展开更多
基金National Natural Science Foundation of China(No.60504033)
文摘An iterative (run-to-run) optimization method was presented for batch processes under input constraints. Generally it is very difficult to acquire an accurate mechanistic model for a batch process.Because support vector machine is powerful for the problems characterized by small samples,nonlinearity, high dimension and local minima, support vector regression models were developed for the end-point optimization of batch processes. Since there is no analytical way to find the optimal trajectory, an iterative method was used to exploit the repetitive nature of batch processes to determine the optimal operating policy. The optimization algorithm is proved convergent. The numerical simulation shows that the method can improve the process performance through iterations.
基金Supported by the National High Technology Research and Development 863 Program of China under Grant No.2012AA010902the National Basic Research 973 Program of China under Grant No.2011CB302504the National Natural Science Foundation of China under Grant Nos.61202055,60925009,60921002,61100011
文摘Efficiency of batch processing is becoming increasingly important for many modern commercial service centers, e.g., clusters and cloud computing datacenters. However, periodical resource contentions have become the major performance obstacles for concurrently running applications on mainstream CMP servers. I/O contention is such a kind of obstacle, which may impede both the co-running performance of batch jobs and the system throughput seriously. In this paper, a dynamic I/O-aware scheduling algorithm is proposed to lower the impacts of I/O contention and to enhance the co-running performance in batch processing. We set up our environment on an 8-socket, 64-core server in Dawning Linux Cluster. Fifteen workloads ranging from 8 jobs to 256 jobs are evaluated. Our experimental results show significant improvements on the throughputs of the workloads, which range from 7% to 431%. Meanwhile, noticeable improvements on the slowdown of workloads and the average runtime for each job can be achieved. These results show that a well-tuned dynamic I/O-aware scheduler is beneficial for batch-mode services. It can also enhance the resource utilization via throughput improvement on modern service platforms.