Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configur...Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configuration of a China’s national renewable generation demonstration project combining a large-scale BESS with wind farm and photovoltaic(PV)power station,all coupled to a power transmission system,is introduced,and the key technologies including optimal control and management as well as operational status of this BESS are presented.Additionally,the technical benefits of such a large-scale BESS in dealing with power fluctuation and intermittence issues resulting from grid connection of large-scale renewable generation,and for improvement of operation characteristics of transmission grid,are discussed with relevant case studies.展开更多
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal...A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.展开更多
In this study, we propose a hybrid AI optimal method to improve the efficiency of energy managementin a smart grid such as Renewable Energy Community. This method adopts a Time Delay Neural Networkto forecast the futu...In this study, we propose a hybrid AI optimal method to improve the efficiency of energy managementin a smart grid such as Renewable Energy Community. This method adopts a Time Delay Neural Networkto forecast the future values of the energy features in the community. Then, these forecasts are used by astochastic Model Predictive Control to optimize the community operations with a proper control strategy ofBattery Energy Storage System. The results of the predictions performed on a public dataset with a predictionhorizon of 24 h return a Mean Absolute Error of 1.60 kW, 2.15 kW, and 0.30 kW for photovoltaic generation,total energy consumption, and common services, respectively. The model predictive control fed with suchpredictions generates maximum income compared to the competitors. The total income is increased by 18.72%compared to utilizing the same management system without exploiting predictions from a forecasting method.展开更多
Besides grid-to-vehicle(G2 V) and vehicle-to-grid(V2 G) functions, the battery of an electric vehicle(EV) also has the specific feature of mobility. This means that EVs not only have the potential to utilize the stora...Besides grid-to-vehicle(G2 V) and vehicle-to-grid(V2 G) functions, the battery of an electric vehicle(EV) also has the specific feature of mobility. This means that EVs not only have the potential to utilize the storage of cheap electricity for use in high energy price periods, but can also transfer energy from one place to another place. Based on these special features of an EV battery, a new EV energy scheduling method has been developed and is described in this article. The approach is aimed at optimizing the utilization EV energy for EVs that are regularly used in multiple places. The objective is to minimize electricity costs from multiple meter points. This work applies real data in order to analyze the effectiveness of the method. The results show that by applying the control strategy presented in this paper at locations where the EVs are parked, the electricity cost can be reduced without shifting the demand and lowering customer's satisfaction. The effects of PV size and number of EVs on our model are also analyzed in this paper. This model has the potential to be used by energy system designers as a new perspective to determine optimal sizes of generators or storage devices in energy systems.展开更多
基金supported by National Natural Science Foundation of China(No.51107126 and No.512111046)the Key Projects in National Science and Technology Pillar Program(No.2011BAA07B07)+1 种基金the Beiing Nova Program(No.Z141101001814094)the Science and Technology Foundation of State Grid Corporation of China(No.DG71-14-032)
文摘Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configuration of a China’s national renewable generation demonstration project combining a large-scale BESS with wind farm and photovoltaic(PV)power station,all coupled to a power transmission system,is introduced,and the key technologies including optimal control and management as well as operational status of this BESS are presented.Additionally,the technical benefits of such a large-scale BESS in dealing with power fluctuation and intermittence issues resulting from grid connection of large-scale renewable generation,and for improvement of operation characteristics of transmission grid,are discussed with relevant case studies.
基金Supported by the National Science and Technology Support Program(2013BAG12B01)Foundational and Advanced Research Program General Project of Chongqing City(cstc2013jcyjjq60002)
文摘A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.
文摘In this study, we propose a hybrid AI optimal method to improve the efficiency of energy managementin a smart grid such as Renewable Energy Community. This method adopts a Time Delay Neural Networkto forecast the future values of the energy features in the community. Then, these forecasts are used by astochastic Model Predictive Control to optimize the community operations with a proper control strategy ofBattery Energy Storage System. The results of the predictions performed on a public dataset with a predictionhorizon of 24 h return a Mean Absolute Error of 1.60 kW, 2.15 kW, and 0.30 kW for photovoltaic generation,total energy consumption, and common services, respectively. The model predictive control fed with suchpredictions generates maximum income compared to the competitors. The total income is increased by 18.72%compared to utilizing the same management system without exploiting predictions from a forecasting method.
基金supported by the China Scholarship Council and Donghua University Graduate Student Degree Thesis Innovation Fund Project (Grant No. CUSF-DH-D-2013059)
文摘Besides grid-to-vehicle(G2 V) and vehicle-to-grid(V2 G) functions, the battery of an electric vehicle(EV) also has the specific feature of mobility. This means that EVs not only have the potential to utilize the storage of cheap electricity for use in high energy price periods, but can also transfer energy from one place to another place. Based on these special features of an EV battery, a new EV energy scheduling method has been developed and is described in this article. The approach is aimed at optimizing the utilization EV energy for EVs that are regularly used in multiple places. The objective is to minimize electricity costs from multiple meter points. This work applies real data in order to analyze the effectiveness of the method. The results show that by applying the control strategy presented in this paper at locations where the EVs are parked, the electricity cost can be reduced without shifting the demand and lowering customer's satisfaction. The effects of PV size and number of EVs on our model are also analyzed in this paper. This model has the potential to be used by energy system designers as a new perspective to determine optimal sizes of generators or storage devices in energy systems.