期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators
1
作者 王正铎 朱惠钦 +3 位作者 杨丽珍 王新炜 刘忠伟 陈强 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第4期424-429,共6页
To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypr... To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypropylene(PP)separators,respectively.Critical parameters for separator properties,such as the thermal shrinkage rate,porosity,wettability,and mechanical strength,are evaluated on the plasma treated PP membranes.O_2 plasma treatment is found to remarkably improve the wettability,porosity and electrolyte uptake.PECVD SiO_x-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity.The electrolyte-philicity of the Si Ox-like coating surface can be tuned by the varying O_2 content in the gas mixture during the deposition.Though still acceptable,the mechanical strength is reduced after PECVD,which is due to the plasma etching. 展开更多
关键词 microporous polypropylene membrane lithium-ion battery plasma treatment and SiO_x coating
下载PDF
Forming solid electrolyte interphase in situ in an ionic conducting Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3-polypropylene(PP) based separator for Li-ion batteries 被引量:6
2
作者 吴娇杨 凌仕刚 +3 位作者 杨琪 李泓 许晓雄 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期103-107,共5页
A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and... A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries. 展开更多
关键词 solid state lithium batteries solid electrolyte interphase ionic conductor coated separator lithium dendrite
下载PDF
Synthesis and Properties of Li_2MnSiO_4/C Cathode Materials for Li-ion Batteries 被引量:2
3
作者 王燕超 赵世玺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期945-949,共5页
Carbon was coated on the surface of LiMnSiOto improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 ℃ and the solid-state method... Carbon was coated on the surface of LiMnSiOto improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 ℃ and the solid-state method followed by heat treatment at 950 ℃. It is shown that the cycling performance is greatly enhanced by carbon coating, compared with the pristine LiMnSiOcathode obtained by the solution method. The initial discharge capacity of LiMnSiO/C nanocomposite is 280.9 m Ah/g at 0.05 C with the carbon content of 33.3 wt%. The reasons for the improved electrochemical performance are smaller grain size and higher electronic conductivity due to the carbon coating. The LiMnSiO/C cathode material obtained by the solid-state method exhibits poor cycling performance, the initial discharge capacity is less than 25 m Ah/g. 展开更多
关键词 Li-ion batteries cathode Li_2MnSiO_4 carbon coating
下载PDF
Enhanced electrochemical property of FePO_4-coated LiNi_(0.5)Mn_(1.5)O_4 as cathode materials for Li-ion battery 被引量:5
4
作者 Ting-Feng Yi Yan-Mei Li +3 位作者 Xiao-Ya Li Jing-Jing Pan Qianyu Zhang Yan-Rong Zhu 《Science Bulletin》 SCIE EI CAS CSCD 2017年第14期1004-1010,共7页
Pristine LiNi0.5Mnl.5O4 and FePO4-coated one with Fd-3m space groups were prepared by a sol-gel method. The structure and performance were studied by X-ray diffraction (XRD) rietveld refinement, scanning electron mi... Pristine LiNi0.5Mnl.5O4 and FePO4-coated one with Fd-3m space groups were prepared by a sol-gel method. The structure and performance were studied by X-ray diffraction (XRD) rietveld refinement, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive spectrometer (EDS) mapping, electrochemical impedance spectroscopy (EIS) and charge- discharge tests, respectively. The lattice parameters of all samples almost remain the same from the Rietveld refinement, revealing that the crystallographic structure has no obvious difference between pris- tine LiNi0.5Mn1.5O4 and FePO4-coated one. All materials show similar morphologies with uniform particle distribution with small particle size, and FePO4 coating does not affect the morphology of LiNi0.5Mnl05O 4 material. EDS mapping and HRTEM show that FePO4 may be successfully wrapped around the surfaces of LiNio.sMnl.s04 particles, and provides an effective coating layer between the electrolyte and the surface of LiNi0.5Mn1.5O4 particles. FePO4 (1 wt%)-coated LiNio.sMnl.504 cathode shows the highest discharge capac- ity at high rate (2 C) among all samples. After 80 cycles, the reversible discharge capacity of FePO4 (1 wt%) coated LiNi0.5Mn0.5O4 is 117 mAh g^-1, but the pristine one only has 50 mAh g^-1. FeP04 coating is an effec- tive and controllable way to stabilize the LiNi0.5Mn1.5O4/electrolyte interface, and avoids the direct con- tact between LiNi0.5Mn1.5O4 powders and electrolyte, then suppresses the side reactions and enhances the electrochemical performance of the LiNi0.5Mn1.5O4. 展开更多
关键词 LiNi0.5Mn1.5O4 FePO4 coating Electrochemical property Lithium-ion batteries
原文传递
Sub-100 nm hollow SnO_2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances 被引量:4
5
作者 Shuang-Lei Yang Bang-Hong Zhou +4 位作者 Mei Lei Lan-Ping Huang Jun Pan Wei Wu Hong-Bo Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第10期1293-1297,共5页
Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with ... Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs. 展开更多
关键词 Tin oxide nanoparticles Carbon coating Lithium ion batteries Anode nanomaterials Size-controllable synthesis
原文传递
SiO_2@C hollow sphere anodes for lithium-ion batteries 被引量:2
6
作者 Xuelian Liu Yuxi Chen +1 位作者 Hongbo Liu Zhi-Quan Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期239-245,共7页
As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hyd... As anode materials for lithium-ion batteries, SiO2 is of great interest because of its high capacity, low cost and environmental affinity. A facile approach has been developed to fabricate SiO2@C hollow spheres by hydrolysis of tetraethyl orthosilicate(TEOS) to form SiO2 shells on organic sphere templates followed by calcinations in air to remove the templates, and then the SiO2 shells are covered by carbon layers.Electron microscopy investigations confirm hollow structure of the SiO2@C. The SiO2@C hollow spheres with different SiO2 contents display gradual increase in specific capacity with discharge/charge cycling,among which the SiO2@C with SiO2 content of 67 wt% exhibits discharge/charge capacities of 653.4/649.6 mAh g^(-1) over 160 cycles at current density of 0.11 mA cm^(-2). The impedance fitting of the electrochemical impedance spectroscopy shows that the SiO2@C with SiO2 content of 67 wt% has the lowest charge transfer resistance, which indicates that the SiO2@C hollow spheres is promising anode candidate for lithium-ion batteries. 展开更多
关键词 Silica Hollow spheres Carbon coating Anode Lithium-ion batteries
原文传递
Lithiation-enhanced charge transfer and sliding strength at the silicon-graphene interface:A first-principles study 被引量:1
7
作者 Cheng Chang Xiaoyan Li +1 位作者 Zhiping Xu Huajian Gao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第3期254-262,共9页
The application of silicon as ultrahigh capacity electrodes in lithiumion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a resul... The application of silicon as ultrahigh capacity electrodes in lithiumion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a result of its large volumetric change during lithiation and delithiation. Graphene coating is one feasible technique to mitigate the mechanical degradation of Si anode and improve its conductivity. In this paper, first-principles calculations are performed to study the atomic structure, charge transfer and sliding strength of the interface between lithiated silicon and graphene. Our results show that Li atoms segre- gate at the (lithiated) Si-graphene interface preferentially, donating electrons to graphene and enhancing the interfacial sliding resistance. Moreover, the interfacial cohesion and sliding strength can be further enhanced by introducing single-vacancy defects into graphene. These findings provide insights that can guide the design of stable and efficient anodes of silicon/graphene hybrids for energy storage applications. 展开更多
关键词 Lithium-ion batteries Silicon anode Graphene coating Interracial sliding strength First-principles calculations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部