The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heati...The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.展开更多
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ...The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs).展开更多
With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity e...With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity estimation method is a challenging work to recognize the battery aging level on service and provide regroup strategy of the retied batteries in secondary use.There are still limitations on the current rapid battery capacity estimation methods,such as direct current internal resistance(DCIR)and electrochemical impedance spectroscopy(EIS),in terms of efficiency and robustness.To address the challenges,this paper proposes an improved version of DCIR,named pulse impedance technique(PIT),for rapid battery capacity estimation with more robustness.First,PIT is carried out based on the transient current excitation and dynamic voltage measurement using the high sampling frequency,in which the coherence analysis is used to guide the selection of a reliable frequency band.The battery impedance can be extracted in a wide range of frequency bands compared to the traditional DCIR method,which obtains more information on the battery capacity evaluation.Second,various statistical variables are used to extract aging features,and Pearson correlation analysis is applied to determine the highly correlated features.Then a linear regression model is developed to map the relationship between extracted features and battery capacity.To validate the performance of the proposed method,the experimental system is designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in series.The results reveal that the proposed PIT can provide comparative indicators to EIS,which contributes higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost.展开更多
The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for...The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.展开更多
The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning...The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.展开更多
Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmo...Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmodelling is the key to representing the battery and its dynamic internal parameters and performance. This paperproposes a smart scheme to model the lithium-polymer ion battery while monitoring its present charging currentand terminal voltage at various ambient conditions (temperature and relative humidity). Firstly, the suggestedframework investigated the impact of temperature and relative humidity on the charging process using the constantcurrent-constant voltage (CC-CV) charging protocol. This will be followed by monitoring the battery at thesurrounding operating temperature and relative humidity. Hence, efficient non-linear modelling of the EV batterydynamic behaviour using the Hammerstein-Wiener (H-W) model is implemented. The H-W model is considered ablack box model that can represent the battery without any mathematical equivalent circuit model which reducesthe computation complexity. Finally, the model beholds the boundaries of the charging process, not affecting onthe lifetime of the battery. Several dynamic models are applied and tested experimentally to ensure theeffectiveness of the proposed scheme under various ambient conditions where the temperature is fixed at40°C and the relative humidity (RH) at 35%, 52%, and 70%. The best fit using the H-W model reached 91.83% todescribe the dynamic behaviour of the battery with a maximum percentage of error 0.1 V which is in goodagreement with the literature survey. Besides, the model has been scaled up to represent a real EV and expressedthe significance of the proposed H-W model.展开更多
This contribution shows an analysis of vibration measurement on large floor-mounted traction batteries of Battery Electric Vehicles(BEV).The focus lies on the requirements for a realistic replication of the mechanical...This contribution shows an analysis of vibration measurement on large floor-mounted traction batteries of Battery Electric Vehicles(BEV).The focus lies on the requirements for a realistic replication of the mechanical environments in a testing laboratory.Especially the analysis on global bending transfer functions and local corner bending coherence indicate that neither a fully stiff fixation of the battery nor a completely independent movement on the four corners yields a realistic and conservative test scenario.The contribution will further show what implication these findings have on future vibration&shock testing equipment for large traction batteries.Additionally,it will cover an outlook on how vibration behavior of highly integrated approaches(cell2car)changes the mechanical loads on the cells.展开更多
Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. batte...Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs.展开更多
This paper presents findings on dynamic cell modeling for state-of-charge (SOC) estimation in an autonomous electric vehicle (AEV). The studied cells are Lithium-Ion Polymer-based with a nominal capacity of around 8 A...This paper presents findings on dynamic cell modeling for state-of-charge (SOC) estimation in an autonomous electric vehicle (AEV). The studied cells are Lithium-Ion Polymer-based with a nominal capacity of around 8 Ah, optimized for power-needy applications. The AEV operates in a harsh environment with rate requirements up to ±25C and highly dynamic rate profiles, unlike portable-electronic applications with constant power output and fractional C rates. SOC estimation methods effective in portable electronics may not suffice for the AEV. Accurate SOC estimation necessitates a precise cell model. The proposed SOC estimation method utilizes a detailed Kalman-filtering approach. The cell model must include SOC as a state in the model state vector. Multiple cell models are presented, starting with a simple one employing “Coulomb counting” as the state equation and Shepherd’s rule as the output equation, lacking prediction of cell relaxation dynamics. An improved model incorporates filter states to account for relaxation and other dynamics in closed-circuit cell voltage, yielding better performance. The best overall results are achieved with a method combining nonlinear autoregressive filtering and dynamic radial basis function networks. The paper includes lab test results comparing physical cells with model predictions. The most accurate models obtained have an RMS estimation error lower than the quantization noise floor expected in the battery-management-system design. Importantly, these models enable precise SOC estimation, allowing the vehicle controller to utilize the battery pack’s full operating range without overcharging or undercharging concerns.展开更多
External short circuit(ESC)of lithium-ion batteries is one of the common and severe electrical failures in electric vehicles.In this study,a novel thermal modelis developed to capture the temperature behavior of batte...External short circuit(ESC)of lithium-ion batteries is one of the common and severe electrical failures in electric vehicles.In this study,a novel thermal modelis developed to capture the temperature behavior of batteries under ESC conditions.Experiments were systematically performed under different battery initial state of charge and ambient temperatures.Based on the experimental results,we employed an extreme learming machine(ELM)-based thermal(ELMT)model to depict battery temperature behavior under ESC,where a lumped-state thermal model was used to replace the activation function of conventional ELMs.To demonstrate the effectiveness of the proposed model,wecompared the ELMT model with a multi-lumped-state thermal(MLT)model parameterized by thegenetic algorithm using the experimental data from various sets of battery cells.It is shown that the ELMT model can achieve higher computa-tional efficiency than the MLT model and better fitting and prediction accuracy,where the average root mean squared error(RMSE)of the fitting is 0.65℃ for the ELMT model and 3.95℃ for the MLT model,and the RMES of the prediction under new data set is 3.97℃ for the ELMT model and 6.11℃ for the MLT model.展开更多
An energy-storage system comprised of lithium-ion battery modules is considered to be a core component of new energy vehicles,as it provides the main power source for the transmission system.However,manufacturing defe...An energy-storage system comprised of lithium-ion battery modules is considered to be a core component of new energy vehicles,as it provides the main power source for the transmission system.However,manufacturing defects in battery modules lead to variations in performance among the cells used in series or parallel configuration.This variation results in incomplete charge and discharge of batteries and non-uniform temperature distribution,which further lead to reduction of cycle life and battery capacity over time.To solve this problem,this work uses experimental and numerical methods to conduct a comprehensive investigation on the clustering of battery cells with similar performance in order to produce a battery module with improved electrochemical performance.Experiments were first performed by dismantling battery modules for the measurement of performance parameters.The kmeans clustering and support vector clustering(SVC)algorithms were then employed to produce battery modules composed of 12 cells each.Experimental verification of the results obtained from the clustering analysis was performed by measuring the temperature rise in the cells over a certain period,while air cooling was provided.It was found that the SVC-clustered battery module in Category 3 exhibited the best performance,with a maximum observed temperature of 32℃.By contrast,the maximum observed temperatures of the other battery modules were higher,at 40℃for Category 1(manufacturer),36℃for Category 2(manufacturer),and 35℃for Category 4(k-means-clustered battery module).展开更多
A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was appli...A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied to identify the structure and antecedent parameters of the model.The least squares algorithm was utilized to determine the consequent parameters.Validation results show that this model can provide accurate SOC estimation for the lithium-ion battery and satisfy the requirement for practical electric vehicle applications.展开更多
In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery o...In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.展开更多
To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation alg...To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation algorithm is proposed by combining the online parameter identification method and the modified covariance extended Kalman filter(MVEKF)algorithm.Based on the parameters identified on line with the multiple forgetting factors recursive least squares methods,the newly-established algorithm recalculates the covariance in the iterative process with the modified estimation and updates the process gain which is used for the next state estimation to decrease errors of the filter.Experiments including constant pulse discharging and the dynamic stress test(DST)demonstrate that compared with the EKF algorithm,the MVEKF algorithm produces fewer estimation errors and can reduce the errors to 5%at most under the complex charging and discharging conditions of batteries.In the charging process under the DST condition,the EKF produces a larger deviation and lacks stability,while the MVEKF algorithm can estimate SOC stably and has a strong robustness.Therefore,the established MVEKF algorithm is suitable for complex and changeable working conditions of batteries for electric vehicles.展开更多
In order to simulate electrical characteristics of a lithium-ion battery used in electric vehicles in a good manner,a three-layer battery model is established.The charge of the lithium-ion battery is assumed to distri...In order to simulate electrical characteristics of a lithium-ion battery used in electric vehicles in a good manner,a three-layer battery model is established.The charge of the lithium-ion battery is assumed to distribute among the three layers and their interaction is used to depict hysteresis and relaxation effect observed in the lithium-ion battery.The model parameters are calibrated and optimized through a numerically nonlinear least squares algorithm in Simulink Parameter Estimation Toolbox for an experimental data set sampled in a hybrid pulse test of the battery.Evaluation results showed that the established model is able to provide an acceptable accuracy in estimating the State of Charge of the lithium-ion battery in an open-loop fashion for a sufficiently long time and to describe the battery voltage behavior more accurately than a commonly used battery model.The battery modeling accuracy can thereby satisfy the requirement for practical electric vehicle applications.展开更多
An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization p...An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization process. The parameters of the model are identified using combined experimental and extended Kalman filter (EKF) recursive methods. The open-circuit voltage and ohmic resistance of the battery are directly measured and calculated from experimental measurements, respectively. The rest of the coupled dynamic parameters, i.e. the RC network parameters, are estimated using the EKF method. Experimental and simulation results are presented to demonstrate the efficacy of the proposed circuit model and parameter identification techniques for simulating battery dynamics.展开更多
Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil f...Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil fuel depletion,increases in air pollution,accelerating energy demands,global warming,and climate change,have paved the way for the electrification of the transport sector.EVs can address all of the aforementioned issues.Portable power supplies have become the lifeline of the EV world,especially lithium-ion(Li-ion)batteries.Li-ion batteries have attracted considerable attention in the EV industry,owing to their high energy density,power density,lifespan,nominal voltage,and cost.One major issue with such batteries concerns providing a quick and accurate estimation of a battery’s state and health;therefore,accurate determinations of the battery’S performance and health,as well as an accurate prediction of its life,are necessary to ensure reliability and efficiency.This study conducts a review of the technological briefs of EVs and their types,as well as the corresponding battery characteristics.Various aspects of recent research and developments in Li-ion battery prognostics and health monitoring are summarized,along with the techniques,algorithms,and models used for current/voltage estimations,state-of-charge(SoC)estimations,capacity estimations,and remaining-useful-life predictions.展开更多
The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the opera...The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the operating performance. A hybrid equilibrium strategy based on decision combing battery state-of-charge( SOC) and voltage has been proposed. The battery SOC is estimated through an improved least squares method. An equalization hardware in loop( HIL) platform has been constructed. Based on this HIL platform,equilibrium strategy has been verified under the constant-current-constant-voltage( CCCV) and dynamicstresstest( DST) conditions. Experimental results indicate that the proposed hybrid equalization strategy can achieve good balance effect and avoid the overcharge and over-discharge of the battery pack at the same time.展开更多
In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured ...In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger.展开更多
In order to investigate the effect of the use of battery electric vehicles on traffic dynamics,the valid paths of electric battery vehicles are defined and a check-based method is proposed to obtain them.Then,assuming...In order to investigate the effect of the use of battery electric vehicles on traffic dynamics,the valid paths of electric battery vehicles are defined and a check-based method is proposed to obtain them.Then,assuming that travelers only focus on their past travel experience,a day-to-day traffic assignment model is established based on reinforcement learning and bounded rationality.In the proposed model,the Bush-Mosteller model,a reinforcement learning model,is modified to calculate path choice probability according to bounded rationality.The modified model updates the path choice probability only if the gap between expected travel time and perceived travel time is beyond the cognitive threshold.Numerical experiments validate the effectiveness of the model and show that traffic flows can converge to the equilibrium in any case of cognitive thresholds and penetration rates of battery electric vehicles.The cognitive threshold has a positive influence on the variation of traffic flows while it has a negative influence on the differences between traffic flows.The adaptation of battery electric vehicles leads to the poor performance of the traffic system.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB1600200in part by the Shaanxi Province Postdoctoral Research Project under grant 2023BSHEDZZ223+3 种基金in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102383101in part by the Shaanxi Province Qinchuangyuan High-Level Innovation and Entrepreneurship Talent Project under grant QCYRCXM-2023-112the Key Research and Development Program of Shaanxi Province under grant 2024GX-YBXM-442in part by the National Natural Science Foundation of China under grand 62373224.
文摘The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.
文摘The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs).
基金support from the China Scholarship Council(Grant No.202108890044).
文摘With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity estimation method is a challenging work to recognize the battery aging level on service and provide regroup strategy of the retied batteries in secondary use.There are still limitations on the current rapid battery capacity estimation methods,such as direct current internal resistance(DCIR)and electrochemical impedance spectroscopy(EIS),in terms of efficiency and robustness.To address the challenges,this paper proposes an improved version of DCIR,named pulse impedance technique(PIT),for rapid battery capacity estimation with more robustness.First,PIT is carried out based on the transient current excitation and dynamic voltage measurement using the high sampling frequency,in which the coherence analysis is used to guide the selection of a reliable frequency band.The battery impedance can be extracted in a wide range of frequency bands compared to the traditional DCIR method,which obtains more information on the battery capacity evaluation.Second,various statistical variables are used to extract aging features,and Pearson correlation analysis is applied to determine the highly correlated features.Then a linear regression model is developed to map the relationship between extracted features and battery capacity.To validate the performance of the proposed method,the experimental system is designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in series.The results reveal that the proposed PIT can provide comparative indicators to EIS,which contributes higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2402002)Beijing Natural Science Foundation of China (Grant No.L223013)。
文摘The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.
基金National Natural Science Foundation of China(Nos.61772130 and 62072096)Fundamental Research Funds for the Central Universities+2 种基金China(No.2232020A-12)International Cooperation Program of Shanghai Science and Technology Commission,China(No.20220713000)Young Top-Notch Talent Program in Shanghai,China。
文摘The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.
文摘Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmodelling is the key to representing the battery and its dynamic internal parameters and performance. This paperproposes a smart scheme to model the lithium-polymer ion battery while monitoring its present charging currentand terminal voltage at various ambient conditions (temperature and relative humidity). Firstly, the suggestedframework investigated the impact of temperature and relative humidity on the charging process using the constantcurrent-constant voltage (CC-CV) charging protocol. This will be followed by monitoring the battery at thesurrounding operating temperature and relative humidity. Hence, efficient non-linear modelling of the EV batterydynamic behaviour using the Hammerstein-Wiener (H-W) model is implemented. The H-W model is considered ablack box model that can represent the battery without any mathematical equivalent circuit model which reducesthe computation complexity. Finally, the model beholds the boundaries of the charging process, not affecting onthe lifetime of the battery. Several dynamic models are applied and tested experimentally to ensure theeffectiveness of the proposed scheme under various ambient conditions where the temperature is fixed at40°C and the relative humidity (RH) at 35%, 52%, and 70%. The best fit using the H-W model reached 91.83% todescribe the dynamic behaviour of the battery with a maximum percentage of error 0.1 V which is in goodagreement with the literature survey. Besides, the model has been scaled up to represent a real EV and expressedthe significance of the proposed H-W model.
基金We acknowledge support for the article processing charge by the Open Access Publication Fund of Hamburg University of Applied Sciences.
文摘This contribution shows an analysis of vibration measurement on large floor-mounted traction batteries of Battery Electric Vehicles(BEV).The focus lies on the requirements for a realistic replication of the mechanical environments in a testing laboratory.Especially the analysis on global bending transfer functions and local corner bending coherence indicate that neither a fully stiff fixation of the battery nor a completely independent movement on the four corners yields a realistic and conservative test scenario.The contribution will further show what implication these findings have on future vibration&shock testing equipment for large traction batteries.Additionally,it will cover an outlook on how vibration behavior of highly integrated approaches(cell2car)changes the mechanical loads on the cells.
文摘Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs.
文摘This paper presents findings on dynamic cell modeling for state-of-charge (SOC) estimation in an autonomous electric vehicle (AEV). The studied cells are Lithium-Ion Polymer-based with a nominal capacity of around 8 Ah, optimized for power-needy applications. The AEV operates in a harsh environment with rate requirements up to ±25C and highly dynamic rate profiles, unlike portable-electronic applications with constant power output and fractional C rates. SOC estimation methods effective in portable electronics may not suffice for the AEV. Accurate SOC estimation necessitates a precise cell model. The proposed SOC estimation method utilizes a detailed Kalman-filtering approach. The cell model must include SOC as a state in the model state vector. Multiple cell models are presented, starting with a simple one employing “Coulomb counting” as the state equation and Shepherd’s rule as the output equation, lacking prediction of cell relaxation dynamics. An improved model incorporates filter states to account for relaxation and other dynamics in closed-circuit cell voltage, yielding better performance. The best overall results are achieved with a method combining nonlinear autoregressive filtering and dynamic radial basis function networks. The paper includes lab test results comparing physical cells with model predictions. The most accurate models obtained have an RMS estimation error lower than the quantization noise floor expected in the battery-management-system design. Importantly, these models enable precise SOC estimation, allowing the vehicle controller to utilize the battery pack’s full operating range without overcharging or undercharging concerns.
基金support by the National Key Researchand Development Program of China(2018YFBO104100).
文摘External short circuit(ESC)of lithium-ion batteries is one of the common and severe electrical failures in electric vehicles.In this study,a novel thermal modelis developed to capture the temperature behavior of batteries under ESC conditions.Experiments were systematically performed under different battery initial state of charge and ambient temperatures.Based on the experimental results,we employed an extreme learming machine(ELM)-based thermal(ELMT)model to depict battery temperature behavior under ESC,where a lumped-state thermal model was used to replace the activation function of conventional ELMs.To demonstrate the effectiveness of the proposed model,wecompared the ELMT model with a multi-lumped-state thermal(MLT)model parameterized by thegenetic algorithm using the experimental data from various sets of battery cells.It is shown that the ELMT model can achieve higher computa-tional efficiency than the MLT model and better fitting and prediction accuracy,where the average root mean squared error(RMSE)of the fitting is 0.65℃ for the ELMT model and 3.95℃ for the MLT model,and the RMES of the prediction under new data set is 3.97℃ for the ELMT model and 6.11℃ for the MLT model.
基金This work was supported by the National Natural Science Foundation of China(51675196 and 51721092)the program for HUST Academic Frontier Youth Team(2017QYTD04)+2 种基金The authors acknowledge the grant(DMETKF2018019)from the State Key Lab of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technologythe Sailing Talent Program and the Guangdong University Youth Innovation Talent Project(2016KQNCX053)supported by the Department of Education of Guangdong Provincethe Shantou University Scientific Research Funded Project(NTF16002).
文摘An energy-storage system comprised of lithium-ion battery modules is considered to be a core component of new energy vehicles,as it provides the main power source for the transmission system.However,manufacturing defects in battery modules lead to variations in performance among the cells used in series or parallel configuration.This variation results in incomplete charge and discharge of batteries and non-uniform temperature distribution,which further lead to reduction of cycle life and battery capacity over time.To solve this problem,this work uses experimental and numerical methods to conduct a comprehensive investigation on the clustering of battery cells with similar performance in order to produce a battery module with improved electrochemical performance.Experiments were first performed by dismantling battery modules for the measurement of performance parameters.The kmeans clustering and support vector clustering(SVC)algorithms were then employed to produce battery modules composed of 12 cells each.Experimental verification of the results obtained from the clustering analysis was performed by measuring the temperature rise in the cells over a certain period,while air cooling was provided.It was found that the SVC-clustered battery module in Category 3 exhibited the best performance,with a maximum observed temperature of 32℃.By contrast,the maximum observed temperatures of the other battery modules were higher,at 40℃for Category 1(manufacturer),36℃for Category 2(manufacturer),and 35℃for Category 4(k-means-clustered battery module).
基金Sponsored by the National High Technology Research and Development Program of China("863"Program)(2003AA501800)
文摘A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied to identify the structure and antecedent parameters of the model.The least squares algorithm was utilized to determine the consequent parameters.Validation results show that this model can provide accurate SOC estimation for the lithium-ion battery and satisfy the requirement for practical electric vehicle applications.
基金Project(50905015) supported by the National Natural Science Foundation of China
文摘In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.
基金The National Natural Science Foundation of China(No.51375086)。
文摘To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation algorithm is proposed by combining the online parameter identification method and the modified covariance extended Kalman filter(MVEKF)algorithm.Based on the parameters identified on line with the multiple forgetting factors recursive least squares methods,the newly-established algorithm recalculates the covariance in the iterative process with the modified estimation and updates the process gain which is used for the next state estimation to decrease errors of the filter.Experiments including constant pulse discharging and the dynamic stress test(DST)demonstrate that compared with the EKF algorithm,the MVEKF algorithm produces fewer estimation errors and can reduce the errors to 5%at most under the complex charging and discharging conditions of batteries.In the charging process under the DST condition,the EKF produces a larger deviation and lacks stability,while the MVEKF algorithm can estimate SOC stably and has a strong robustness.Therefore,the established MVEKF algorithm is suitable for complex and changeable working conditions of batteries for electric vehicles.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50905015)the National High Technology Research and Development Program of China (Grant No.2003AA501800)
文摘In order to simulate electrical characteristics of a lithium-ion battery used in electric vehicles in a good manner,a three-layer battery model is established.The charge of the lithium-ion battery is assumed to distribute among the three layers and their interaction is used to depict hysteresis and relaxation effect observed in the lithium-ion battery.The model parameters are calibrated and optimized through a numerically nonlinear least squares algorithm in Simulink Parameter Estimation Toolbox for an experimental data set sampled in a hybrid pulse test of the battery.Evaluation results showed that the established model is able to provide an acceptable accuracy in estimating the State of Charge of the lithium-ion battery in an open-loop fashion for a sufficiently long time and to describe the battery voltage behavior more accurately than a commonly used battery model.The battery modeling accuracy can thereby satisfy the requirement for practical electric vehicle applications.
文摘An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization process. The parameters of the model are identified using combined experimental and extended Kalman filter (EKF) recursive methods. The open-circuit voltage and ohmic resistance of the battery are directly measured and calculated from experimental measurements, respectively. The rest of the coupled dynamic parameters, i.e. the RC network parameters, are estimated using the EKF method. Experimental and simulation results are presented to demonstrate the efficacy of the proposed circuit model and parameter identification techniques for simulating battery dynamics.
基金by Department of Science and Technology,New Delhi(Indo-Norway consortium)project entitled“Integrated Renewable Resources and Storage Operation and Management”program.
文摘Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil fuel depletion,increases in air pollution,accelerating energy demands,global warming,and climate change,have paved the way for the electrification of the transport sector.EVs can address all of the aforementioned issues.Portable power supplies have become the lifeline of the EV world,especially lithium-ion(Li-ion)batteries.Li-ion batteries have attracted considerable attention in the EV industry,owing to their high energy density,power density,lifespan,nominal voltage,and cost.One major issue with such batteries concerns providing a quick and accurate estimation of a battery’s state and health;therefore,accurate determinations of the battery’S performance and health,as well as an accurate prediction of its life,are necessary to ensure reliability and efficiency.This study conducts a review of the technological briefs of EVs and their types,as well as the corresponding battery characteristics.Various aspects of recent research and developments in Li-ion battery prognostics and health monitoring are summarized,along with the techniques,algorithms,and models used for current/voltage estimations,state-of-charge(SoC)estimations,capacity estimations,and remaining-useful-life predictions.
基金Supported by the National Natural Science Foundation of China(51507012)Beijing Nova Program(Z171100001117063)
文摘The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the operating performance. A hybrid equilibrium strategy based on decision combing battery state-of-charge( SOC) and voltage has been proposed. The battery SOC is estimated through an improved least squares method. An equalization hardware in loop( HIL) platform has been constructed. Based on this HIL platform,equilibrium strategy has been verified under the constant-current-constant-voltage( CCCV) and dynamicstresstest( DST) conditions. Experimental results indicate that the proposed hybrid equalization strategy can achieve good balance effect and avoid the overcharge and over-discharge of the battery pack at the same time.
文摘In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger.
基金The National Natural Science Foundation of China(No.51478110)Postgraduate Research & Practice Innovation Program of Jiangsu Province(No.KYCX18_0139)
文摘In order to investigate the effect of the use of battery electric vehicles on traffic dynamics,the valid paths of electric battery vehicles are defined and a check-based method is proposed to obtain them.Then,assuming that travelers only focus on their past travel experience,a day-to-day traffic assignment model is established based on reinforcement learning and bounded rationality.In the proposed model,the Bush-Mosteller model,a reinforcement learning model,is modified to calculate path choice probability according to bounded rationality.The modified model updates the path choice probability only if the gap between expected travel time and perceived travel time is beyond the cognitive threshold.Numerical experiments validate the effectiveness of the model and show that traffic flows can converge to the equilibrium in any case of cognitive thresholds and penetration rates of battery electric vehicles.The cognitive threshold has a positive influence on the variation of traffic flows while it has a negative influence on the differences between traffic flows.The adaptation of battery electric vehicles leads to the poor performance of the traffic system.