期刊文献+
共找到2,901篇文章
< 1 2 146 >
每页显示 20 50 100
An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System 被引量:1
1
作者 Enhui Sun Jiahao Shi +3 位作者 Lei Zhang Hongfu Ji Qian Zhang Yongyi Li 《Energy Engineering》 EI 2023年第7期1583-1602,共20页
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi... This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively. 展开更多
关键词 Wind power lithium-iron phosphate battery energy storage system coal-fired power integrated energy system
下载PDF
A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation 被引量:1
2
作者 Wei Chen Na Sun +2 位作者 Zhicheng Ma Wenfei Liu Haiying Dong 《Energy Engineering》 EI 2023年第6期1445-1464,共20页
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra... To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit. 展开更多
关键词 battery energy storage secondary FM signal distribution mode charge state two-layer fuzzy control
下载PDF
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
3
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng Yueping Fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 Li-ion batteries energy conversion and storage Photo rechargeable Electrochemistry Copper oxide
下载PDF
Building a Cloud-Based Energy Storage System through Digital Transformation of Distributed Backup Battery in Mobile Base Stations 被引量:10
4
作者 Song Ci Yanglin Zhou +2 位作者 Yuan Xu Xingjian Diao Junwei Wang 《China Communications》 SCIE CSCD 2020年第4期42-50,共9页
Battery energy storage systems(ESS) have been widely used in mobile base stations(BS) as the main backup power source. Due to the large number of base stations, massive distributed ESSs have largely stayed in idle and... Battery energy storage systems(ESS) have been widely used in mobile base stations(BS) as the main backup power source. Due to the large number of base stations, massive distributed ESSs have largely stayed in idle and very difficult to achieve high asset utilization. In recent years, the fast-paced development of digital energy storage(DES) technology has revolutionized the traditional operation and maintenance of ESSs by transforming them into digital assets, further enabling battery energy storage services, raising up a new way to achieve a much higher utilization of such kind of largely idle ESS resources. In this paper, the disruptive DES technology will be introduced and its application under the context of mobile BSs will be studied, and then a cloud-based energy storage(CES) platform is proposed based on a large scale distributed DESs to provide a new cyber-enabled energy storage service to the local utility company. A real-world case study shows the effectiveness and efficiency of the CES platform. 展开更多
关键词 digital energy storage dynamic RECONFIGURABLE battery network energy DIGITIZATION software-defined battery system cloud energy storage
下载PDF
A distributed VSG control method for a battery energy storage system with a cascaded H-bridge in a grid-connected mode 被引量:4
5
作者 Yichi Cai Donglian Qi 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期343-352,共10页
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ... With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method. 展开更多
关键词 VSG Cascaded H-bridge converters battery energy storage system Renewable energy integration
下载PDF
Battery Energy Storage to Strengthen the Wind Generator in Integrated Power System 被引量:2
6
作者 Sharad W. Mohod Mohan V. Aware 《Journal of Electronic Science and Technology》 CAS 2011年第1期23-30,共8页
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.... The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers. 展开更多
关键词 battery energy storage power quality wind energy generating system.
下载PDF
Evaluation and Analysis of Battery Technologies Applied to Grid-Level Energy Storage Systems Based on Rough Set Theory 被引量:1
7
作者 Zhiyuan Xie Liang Du +4 位作者 Xiaojun Lv Qing Wang Jianglei Huang Tianyi Fu Shengyue Li 《Transactions of Tianjin University》 EI CAS 2020年第3期228-235,共8页
Interest in the development of grid-level energy storage systems has increased over the years.As one of the most popular energy storage technologies currently available,batteries offer a number of high-value opportuni... Interest in the development of grid-level energy storage systems has increased over the years.As one of the most popular energy storage technologies currently available,batteries offer a number of high-value opportunities due to their rapid responses,flexible installation,and excellent performances.However,because of the complexity,multifunctionality,and wide deployment of power grids,trade-offs in battery performance exist,especially when considering economics,environmental effects,and safety.Therefore,establishing a comprehensive assessment of battery technologies is an urgent undertaking.In this work,we present an analysis of rough sets to evaluate the integration of battery systems(e.g.,lead-acid batteries,lithium-ion batteries,nickel/metal-hydrogen batteries,zinc-air batteries,and Na-S batteries)into a power grid.Specifically,technological properties,economic significance,environmental effects,and safety of these battery systems are evaluated on the basis of rough set theory.In addition,some perspectives are provided to promote the development of battery technologies for grid-level energy storage. 展开更多
关键词 Grid-level energy storage battery Assessment ROUGH SET theory
下载PDF
A novel coordinated control strategy considering power smoothing for a hybrid photovoltaic/battery energy storage system 被引量:5
8
作者 DAUD Muhamad Zalani MOHAMED Azah HANNAN M A 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期394-404,共11页
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg... This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range. 展开更多
关键词 协调控制策略 储能系统 PSCAD/EMTDC 电池 光伏 混合 输出功率 BES
下载PDF
Multifunction Battery Energy Storage System for Distribution Networks 被引量:1
9
作者 Omar H.Abdalla Gamal Abdel-Salam Azza A.A.Mostafa 《Energy Engineering》 EI 2022年第2期569-589,共21页
Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribu... Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribution network’s challenges,which affect network performance,are:(i)Load disconnection or technical constraints violation,which may happen during reconfiguration after fault,(ii)Unpredictable power generation change due to Photovoltaic(PV)penetration,(iii)Undesirable PV reverse power,and(iv)Low Load Factor(LF)which may affect electricity price.In this paper,the BESS is used to support distribution networks in reconfiguration after a fault,increasing Photovoltaic(PV)penetration,cutting peak load,and loading valley filling.The paper presents a methodology for BESS optimal locations and sizing considering technical constraints during reconfiguration after a fault and PV power generation changes.For determining themaximumpower generation change due to PV,actual power registration of connected PV plants in South Cairo Electricity Distribution Company(SCEDC)was considered for a year.In addition,the paper provides a procedure for distribution network operator to employ the proposed BESS to perform multi functions such as:the ability to absorb PV power surplus,cut peak load and fill load valley for improving network’s performances.The methodology is applied to a modified IEEE 37-node and a real network part consisting of 158 nodes in SCEDC zone.The simulation studies are performed using the DIgSILENT PowerFactory software andDPL programming language.The Mixed Integer Linear Programming optimization technique(MILP)in MATLAB is employed to choose the best locations and sizing of BESS. 展开更多
关键词 battery energy storage system photovoltaic penetration peak load reduction valley filling MILP optimization
下载PDF
Battery Energy Storage System Information Modeling Based on IEC 61850
10
作者 Nan Wang Wei Liang +1 位作者 Yanan Cheng Yunfei Mu 《Journal of Power and Energy Engineering》 2014年第4期233-238,共6页
This paper discourses the typical ways to access system of the battery energy storage system. To realize the battery energy storage system based on IEC 61850, hierarchical information architecture for battery energy s... This paper discourses the typical ways to access system of the battery energy storage system. To realize the battery energy storage system based on IEC 61850, hierarchical information architecture for battery energy storage system is presented, the general design and implementation methods for device information model are elaborated, and the communication methods of the architecture are proposed. Example of battery energy storage system information model based on IEC 61850 tests that the battery energy storage system information architecture established is feasible. 展开更多
关键词 IEC 61850 battery energy storage system INFORMATION MODELING
下载PDF
Battery Energy Storage System and Demand Response Based Optimal Virtual Power Plant Operation
11
作者 Ya-Chin Chang Rung-Fang Chang 《Journal of Applied Mathematics and Physics》 2017年第4期766-773,共8页
With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably... With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably regulate the powers access to the distribution network. In this paper, an optimal VPP operating problem is used to optimize the charging/discharging schedule of each BESS and the DR scheme with the objective to maximize the benefit by regulating the supplied powers over daily 24 hours. The proposed solution method is composed of an iterative dynamic programming optimal BESS schedule approach and a particle swarm optimization based (PSO-based) DR scheme approach. The two approaches are executed alternatively until the minimum elec-tricity cost of the whole day is obtained. The validity of the proposed method was confirmed with the obviously decreased supplied powers in the peak-load hours and the largely reduced electricity cost. 展开更多
关键词 battery energy storage system Distributed energy RESOURCE DEMAND Response ITERATIVE Dynamic PROGRAMMING Particle SWARM Optimization Virtual Power Plant
下载PDF
Typical Application Scenarios and Economic Benefit Evaluation Methods of Battery Energy Storage System
12
作者 Ming Zeng Haibin Cao +4 位作者 Ting Pan Pinduan Hu Shi Tian Lijun Zhong Zhi Ling 《Energy Engineering》 EI 2022年第4期1569-1586,共18页
Energy storage system is an important means to improve the flexibility and safety of traditional power system,but it has the problem of high cost and unclear value recovery path.In this paper,the typical application s... Energy storage system is an important means to improve the flexibility and safety of traditional power system,but it has the problem of high cost and unclear value recovery path.In this paper,the typical application scenarios of energy storage system are summarized and analyzed from the perspectives of user side,power grid side and power generation side.Based on the typical application scenarios,the economic benefit assessment framework of energy storage system including value,time and efficiency indicators is proposed.Typical battery energy storage projects are selected for economic benefit calculation according to different scenarios,and key factors are selected for sensitivity analysis.Finally,the key factors affecting economic benefit of the energy storage system are analyzed. 展开更多
关键词 battery energy storage system application scenarios economic benefit evaluation sensitivity analysis
下载PDF
Smart Inverter Functionality Testing for Battery Energy Storage Systems
13
作者 Jun Hashimoto Taha Selim Ustun Kenji Otani 《Smart Grid and Renewable Energy》 2017年第11期337-350,共14页
Variable distributed energy resources (DERs) such as photovoltaic (PV) systems and wind power systems require additional power resources to control the balance between supply and demand. Battery energy storage systems... Variable distributed energy resources (DERs) such as photovoltaic (PV) systems and wind power systems require additional power resources to control the balance between supply and demand. Battery energy storage systems (BESSs) are one such possible resource for providing grid stability. It has been proposed that decentralized BESSs could help support microgrids (MGs) with intelligent control when advanced functionalities are implemented with variable DERs. One key challenge is developing and testing smart inverter controls for DERs. This paper presents a standardized method to test the interoperability and functionality of BESSs. First, a survey of grid-support standards prevalent in several countries was conducted. Then, the following four interoperability functions defined in IEC TR 61850-90-7 were tested: the specified active power from storage test (INV4), the var-priority Volt/VAR test (VV) and the specified power factor test (INV3) and frequency-watt control (FW). This study then out-lines the remaining technical issues related to basic BESS smart inverter test protocols. 展开更多
关键词 battery energy storage systems Distributed energy Resources SMART INVERTER CONTROLS Grid-Support Standards Test Protocols Interoperability
下载PDF
Design of High-Utilization Current-Sharing Controller for Battery-Ultracapacitor Hybrid Energy Storage System
14
作者 Lan-Rong Dung Zhe-Yi Lin 《Circuits and Systems》 2018年第9期125-132,共8页
In this paper, a new control strategy of battery-ultracapacitor hybrid energy storage system (HESS) is proposed for hybrid electric drive vehicles (HEVs). Compared to the stand, alone battery system may not be suffici... In this paper, a new control strategy of battery-ultracapacitor hybrid energy storage system (HESS) is proposed for hybrid electric drive vehicles (HEVs). Compared to the stand, alone battery system may not be sufficient to satisfy peak demand periods during transients in HEVs, the ultracapacitor pack can supply or recover the peak power and it can be used in high C-rates. However, the problem of battery-ultracapacitor hybrid energy storage system (HESS) is how to interconnect the battery and ultracapacitor and how to control the power distribution. This paper reviewed some battery-ultracapacitor hybrid energy storage system topology and investigated the advantages and disadvantages, then proposed a new control strategy. The proposed control strategy can improve the system performance and ultracapacitor utilization, while also decreasing the battery pack size to avoid the thermal runaway problems and increase the life of the battery. The experiment results showed the proposed control strategy can improve 3% - 4% ultracapacitor utilization. 展开更多
关键词 ULTRACAPACITOR DC/DC CONVERTER energy storage system battery
下载PDF
Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices 被引量:6
15
作者 Xin Wan Tiansheng Mu Geping Yin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期136-164,共29页
The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of ea... The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of each device to maintain the original performance under external forces,but also demands the overall device to be flexible in response to external fields.However,flexible energy storage devices inevitably occur mechanical damages(extrusion,impact,vibration)/electrical damages(overcharge,over-discharge,external short circuit)during longterm complex deformation conditions,causing serious performance degradation and safety risks.Inspired by the healing phenomenon of nature,endowing energy storage devices with self-healing capability has become a promising strategy to effectively improve the durability and functionality of devices.Herein,this review systematically summarizes the latest progress in intrinsic self-healing chemistry for energy storage devices.Firstly,the main intrinsic self-healing mechanism is introduced.Then,the research situation of electrodes,electrolytes,artificial interface layers and integrated devices based on intrinsic self-healing and advanced characterization technology is reviewed.Finally,the current challenges and perspective are provided.We believe this critical review will contribute to the development of intrinsic self-healing chemistry in the flexible energy storage field. 展开更多
关键词 Flexible energy storage Intrinsic self-healing chemistry Lithium-ion battery Supercapacitor Advanced characterizations
下载PDF
Thermal runaway propagation behavior of the Cell-to-Pack battery system 被引量:1
16
作者 Huaibin Wang Qinzheng Wang +9 位作者 Zhenyang Zhao Changyong Jin Chengshan Xu Wensheng Huang Zhuchen Yuan Shuyu Wang Yang Li Yanhong Zhao Junli Sun Xuning Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期162-172,共11页
Structurally compact battery packs significantly improve the driving range of electric vehicles.Technologies like Cell-to-Pack increase energy density by 15%-20%.However,the safety implications of multiple tightly-pac... Structurally compact battery packs significantly improve the driving range of electric vehicles.Technologies like Cell-to-Pack increase energy density by 15%-20%.However,the safety implications of multiple tightly-packed battery cells still require in-depth research.This paper studies thermal runaway propagation behavior in a Cell-to-Pack system and assesses propagation speed relative to other systems.The investigation includes temperature response,extent of battery damage,pack structure deformation,chemical analysis of debris,and other considerations.Results suggest three typical patterns for the thermal runaway propagation process:ordered,disordered,and synchronous.The synchronous propagation pattern displayed the most severe damage,indicating energy release is the largest under the synchronous pattern.This study identifies battery deformation patterns,chemical characteristics of debris,and other observed factors that can both be applied to identify the cause of thermal runaway during accident investigations and help promote safer designs of large battery packs used in large-scale electric energy storage systems. 展开更多
关键词 energy storage Cell-to-Pack Lithium-ion battery Thermal runaway battery safety
下载PDF
Recent advances in 3D printed electrode materials for electrochemical energy storage devices 被引量:1
17
作者 Suhail Mubarak Duraisami Dhamodharan Hun-Soo Byun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期272-312,I0008,共42页
Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable r... Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable resources.Electrochemical energy storage devices(EESDs)operate efficiently as a result of the construction and assemblage of electrodes and electrolytes with appropriate structures and effective materials.Conventional manufacturing procedures have restrictions on regulating the morphology and architecture of the electrodes,which would influence the performance of the devices.3D printing(3DP)is an advanced manufacturing technology combining computer-aided design and has been recognised as an artistic method of fabricating different fragments of energy storage devices with its ability to precisely control the geometry,porosity,and morphology with improved specific energy and power densities.The capacity to create mathematically challenging shape or configuration designs and high-aspect-ratio 3D architectures makes 3D printing technology unique in its benefits.Nevertheless,the control settings,interactive manufacturing processes,and protracted post-treatments will affect the reproducibility of the printed components.More intelligent software,sophisticated control systems,high-grade industrial equipment,and post-treatment-free methods are necessary to develop.3D printed(3DPd)EESDs necessitate dynamic printable materials and composites that are influenced by performance criteria and fundamental electrochemistry.Herein,we review the recent advances in 3DPd electrodes for EES applications.The emphasis is on printable material synthesis,3DP techniques,and the electrochemical performance of printed electrodes.For the fabrication of electrodes,we concentrate on major 3DP technologies such as direct ink writing(DIW),inkjet printing(IJP),fused deposition modelling(FDM),and stereolithography3DP(SLA).The benefits and drawbacks of each 3DP technology are extensively discussed.We provide an outlook on the integration of synthesis of emerging nanomaterials and fabrication of complex structures from micro to macroscale to construct highly effective electrodes for the EESDs. 展开更多
关键词 3D printing 3D printed electrodes Electrochemical energy storage Lithium-ion battery Zinc-ion battery SUPERCAPACITOR
下载PDF
Massive energy storage system for effective usage of renewable energy 被引量:2
18
作者 Kenji IBA 《Global Energy Interconnection》 EI CAS CSCD 2022年第3期301-308,共8页
The current energy trend indicates a strong thrust toward transforming renewable energy as a major power source.To achieve this mission,battery energy storage systems(BESSs)are indispensable.Although BESSs are expensi... The current energy trend indicates a strong thrust toward transforming renewable energy as a major power source.To achieve this mission,battery energy storage systems(BESSs)are indispensable.Although BESSs are expensive,cost reduction can be achieved by using BESSs for multiple purposes,such as load leveling,business continuity planning,frequency control,capacity market,arbitrage,and emergency power.In this paper,various applications of BESSs are classified.The possibility of achieving conflict-free combination of different applications is demonstrated.The total required energy storage capacity in Japan is estimated to be 150–200 GWh by 2030.The present status of NaS batteries for multipurpose use and new trends in battery-based businesses are introduced. 展开更多
关键词 battery energy storage system(bess) Renewable energy(RE) Multipurpose Use ARBITRAGE
下载PDF
Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems 被引量:11
19
作者 Tianmei Chen Yi Jin +5 位作者 Hanyu Lv Antao Yang Meiyi Liu Bing Chen Ying Xie Qiang Chen 《Transactions of Tianjin University》 EI CAS 2020年第3期208-217,共10页
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-... In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems. 展开更多
关键词 LITHIUM-ION batteries Grid-level energy storage system Frequency regulation and peak SHAVING RENEWABLE energy integration Power management
下载PDF
Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage 被引量:15
20
作者 Xiayue Fan Bin Liu +8 位作者 Jie Liu Jia Ding Xiaopeng Han Yida Deng Xiaojun Lv Ying Xie Bing Chen Wenbin Hu Cheng Zhong 《Transactions of Tianjin University》 EI CAS 2020年第2期92-103,共12页
Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, ... Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES. 展开更多
关键词 battery TECHNOLOGIES Grid-level LARGE-SCALE ELECTRICAL energy storage Peak shaving and load leveling Voltage and frequency regulation Emergency response
下载PDF
上一页 1 2 146 下一页 到第
使用帮助 返回顶部