考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM...考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。展开更多
为了提高锂离子电池在运行过程中的内短路故障检测效率,提出基于弛豫电压的锂离子电池内短路分级及检测方法。首先根据内短路电池暂停放电后的弛豫电压曲线特征,基于支持向量机模型对电池内短路等级进行分类。然后根据分类结果,提出相...为了提高锂离子电池在运行过程中的内短路故障检测效率,提出基于弛豫电压的锂离子电池内短路分级及检测方法。首先根据内短路电池暂停放电后的弛豫电压曲线特征,基于支持向量机模型对电池内短路等级进行分类。然后根据分类结果,提出相应的电池内短路故障检测方法。对于中期内短路电池,立即令其退出电池系统;对于早期内短路电池,利用卡尔曼滤波(Kalman filtering,KF)算法实时计算电池荷电状态(state of charge,SOC)偏差;对于无短路电池,保持原检测措施。最后对所提分类及检测方法进行实验验证。实验结果表明该分类方法的正确率受弛豫电压序列的采样总时间长度和采样间隔时间影响,增加恒流恒压充电阶段获取的特征数据能进一步提高内短路分类结果的正确率,实时检测电池SOC偏差的方法能及时发现异常的早期内短路电池。展开更多
Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was stu...Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was studied. The results show that both the absolute value of the molar enthalpy change and the internal resistance of evolution hydrogen reaction are less than that of absorption hydrogen reaction at the same state of charge. The molar reaction enthalpy change of absorption and evolution of hydride electrode change contrarily with the enhancement of filling degree of hydrogen in hydride electrode. The relation curve of molar reaction enthslpy change to state of charge, both absorption and evolution hydrogen reaction, is close to a constant when the state of charge is 10%- 60%, and during state of charge below 10% or state of charge above 60%, the molar reaction enthalpy change varies sharply. Meanwhile, the internal resistance of electrode reaction has an ascending trend with the enhancement on filling degree of hydrogen in hydride electrode in both absorption and evolution hydrogen reaction.展开更多
Modeling and state of charge(SOC)estimation of Lithium cells are crucial techniques of the lithium battery management system.The modeling is extremely complicated as the operating status of lithium battery is affected...Modeling and state of charge(SOC)estimation of Lithium cells are crucial techniques of the lithium battery management system.The modeling is extremely complicated as the operating status of lithium battery is affected by temperature,current,cycle number,discharge depth and other factors.This paper studies the modeling of lithium iron phosphate battery based on the Thevenin’s equivalent circuit and a method to identify the open circuit voltage,resistance and capacitance in the model is proposed.To improve the accuracy of the lithium battery model,a capacity estimation algorithm considering the capacity loss during the battery’s life cycle.In addition,this paper solves the SOC estimation issue of the lithium battery caused by the uncertain noise using the extended Kalman filtering(EKF)algorithm.A simulation model of actual lithium batteries is designed in Matlab/Simulink and the simulation results verify the accuracy of the model under different operating modes.展开更多
文摘考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。
文摘为了提高锂离子电池在运行过程中的内短路故障检测效率,提出基于弛豫电压的锂离子电池内短路分级及检测方法。首先根据内短路电池暂停放电后的弛豫电压曲线特征,基于支持向量机模型对电池内短路等级进行分类。然后根据分类结果,提出相应的电池内短路故障检测方法。对于中期内短路电池,立即令其退出电池系统;对于早期内短路电池,利用卡尔曼滤波(Kalman filtering,KF)算法实时计算电池荷电状态(state of charge,SOC)偏差;对于无短路电池,保持原检测措施。最后对所提分类及检测方法进行实验验证。实验结果表明该分类方法的正确率受弛豫电压序列的采样总时间长度和采样间隔时间影响,增加恒流恒压充电阶段获取的特征数据能进一步提高内短路分类结果的正确率,实时检测电池SOC偏差的方法能及时发现异常的早期内短路电池。
基金Project(2001AA501433) supported by the National High Technology Research and Development Programof China
文摘Application of thermal electrochemical equation to metal-hydride half-cell system was investigated, and the influence of state of charge on the thermal electrochemical performance of hydrogen storage materials was studied. The results show that both the absolute value of the molar enthalpy change and the internal resistance of evolution hydrogen reaction are less than that of absorption hydrogen reaction at the same state of charge. The molar reaction enthalpy change of absorption and evolution of hydride electrode change contrarily with the enhancement of filling degree of hydrogen in hydride electrode. The relation curve of molar reaction enthslpy change to state of charge, both absorption and evolution hydrogen reaction, is close to a constant when the state of charge is 10%- 60%, and during state of charge below 10% or state of charge above 60%, the molar reaction enthalpy change varies sharply. Meanwhile, the internal resistance of electrode reaction has an ascending trend with the enhancement on filling degree of hydrogen in hydride electrode in both absorption and evolution hydrogen reaction.
基金This work is supported in part by Open Fund of State Key Laboratory of Operation and Control of Renewable Energy&Storage Systems(DGB51201700424)Industrial Innovation of Jilin Province Development and Reform Commission(2017C017-2)Jilin Provincial“13th Five-Year Plan”Science and Technology Project([2016]88).
文摘Modeling and state of charge(SOC)estimation of Lithium cells are crucial techniques of the lithium battery management system.The modeling is extremely complicated as the operating status of lithium battery is affected by temperature,current,cycle number,discharge depth and other factors.This paper studies the modeling of lithium iron phosphate battery based on the Thevenin’s equivalent circuit and a method to identify the open circuit voltage,resistance and capacitance in the model is proposed.To improve the accuracy of the lithium battery model,a capacity estimation algorithm considering the capacity loss during the battery’s life cycle.In addition,this paper solves the SOC estimation issue of the lithium battery caused by the uncertain noise using the extended Kalman filtering(EKF)algorithm.A simulation model of actual lithium batteries is designed in Matlab/Simulink and the simulation results verify the accuracy of the model under different operating modes.