期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
Evaluation of On-Line MPPT Algorithms for PV-Based Battery Storage Systems
1
作者 Belqasem Aljafari Eydhah Almatrafi +3 位作者 Sudhakar Babu Thanikanti Sara A.Ibrahim Mohamed A.Enany Marwa M.Ahmed 《Computers, Materials & Continua》 SCIE EI 2022年第11期3595-3611,共17页
This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comp... This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comparative study in terms of the dynamic response,battery state of charge(SOC),and oscillations around the Maximum Power Point(MPP)of the PV-BSS to variations in climate conditions,these techniques are simulated in Matlab/Simulink.The introduced methodologies are classified into two types;the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb&Observe and Incremental Conductance techniques.The second type is a novel proposed methodology is based on using solar irradiance and cell temperature measurements with pre-build Adaptive Neuro-Fuzzy Inference System(ANFIS)model to predict DC–DC converter optimum duty cycle to track MPP.Then evaluation study is introduced for conventional and proposed On-Line MPPT techniques.This comparative study can be useful in specifying the appropriateness of the MPPT techniques for PV-BSS.Also the introduced model can be used as a valued reference model for future research related to Soft Computing(SC)MPPT techniques.A significant improvement of SOC is achieved by the proposed model and methodology with high accuracy and lower oscillations. 展开更多
关键词 Photo-voltaic based battery storage systems adaptive neuro-fuzzy inference system maximum power point tracking perturb&observe technique incremental conductance technique state of charge
下载PDF
An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System 被引量:1
2
作者 Enhui Sun Jiahao Shi +3 位作者 Lei Zhang Hongfu Ji Qian Zhang Yongyi Li 《Energy Engineering》 EI 2023年第7期1583-1602,共20页
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi... This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively. 展开更多
关键词 Wind power lithium-iron phosphate battery energy storage system coal-fired power integrated energy system
下载PDF
A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation 被引量:1
3
作者 Wei Chen Na Sun +2 位作者 Zhicheng Ma Wenfei Liu Haiying Dong 《Energy Engineering》 EI 2023年第6期1445-1464,共20页
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra... To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit. 展开更多
关键词 battery energy storage secondary FM signal distribution mode charge state two-layer fuzzy control
下载PDF
Battery Storage Configuration of AC/DC Hybrid Distribution Networks
4
作者 He Meng Hongjie Jia +2 位作者 Tao Xu Wei Wei Xiaoyu Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第3期859-872,共14页
The upscaling requirements of energy transition highlight the urgent need for ramping up renewables and boosting system efficiencies.However,the stochastic nature of excessive renewable energy resources has challenged... The upscaling requirements of energy transition highlight the urgent need for ramping up renewables and boosting system efficiencies.However,the stochastic nature of excessive renewable energy resources has challenged stable and efficient operation of the power system.Battery energy storage systems(BESSs)have been identified as critical to mitigate random fluctuations,unnecessary green energy curtailment and load shedding with rapid response and flexible connection.On the other hand,an AC/DC hybrid distribution system can offer merged benefits in both AC and DC subsystems without additional losses during AC/DC power conversion.Therefore,configuring BESSs on an AC/DC distribution system is wellpositioned to meet challenges brought by carbon reductions in an efficient way.A bi-level optimization model of BESS capacity allocation for AC/DC hybrid distribution systems,considering the flexibility of voltage source converters(VSCs)and power conversion systems(PCSs),has been established in this paper to address the techno-economic issues that hindered wide implementation.The large-scale nonlinear programming problem has been solved utilizing a genetic algorithm combined with second-order cone programming.Rationality and effectiveness of the model have been verified by setting different scenarios through case studies.Simulation results have demonstrated the coordinated operation of BESS and AC/DC hybrid systems can effectively suppress voltage fluctuations and improve the cost-benefit of BESSs from a life cycle angle. 展开更多
关键词 AC/DC hybrid distribution network arbitrage revenue battery energy storage system life cycle cost voltage source converter
原文传递
Electricity Tariff Aware Model Predictive Controller for Customer Battery Storage with Uncertain Daily Cycling Load
5
作者 Dejan P.Jovanović Gerard F.Ledwich Geoffrey R.Walker 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第1期140-148,共9页
To optimally control the energy storage system of the battery exposed to the volatile daily cycling load and electricity tariffs,a novel modification of a conventional model predictive control is proposed.The uncertai... To optimally control the energy storage system of the battery exposed to the volatile daily cycling load and electricity tariffs,a novel modification of a conventional model predictive control is proposed.The uncertainty of daily cycling load prompts the need to design a new cost function which is able to quantify the associated uncertainty.By modelling a probabilistic dependence among flow,load,and electricity tariffs,the expected cost function is obtained and used in the constrained optimization.The proposed control strategy explicitly incorporates the cycling nature of customer load.Furthermore,for daily cycling load,a fixed-end time and a fixed-end output problem are addressed.It is demonstrated that the proposed control strategy is a convex optimization problem.While stochastic and robust model predictive controllers evaluate the cost concerning model constraints and parameter variations.Also,the expected cost across the flow variations is considered.The density function of load probability improves load prediction over a progressive prediction horizon,and a nonlinear battery model is utilized. 展开更多
关键词 Residential energy systems battery storage model predictive control nonlinear optimization cost of daily electricity consumption
原文传递
Energy Management of a Battery Storage and D-STATCOM Integrated Power System Using the Fractional Order Sliding Mode Control
6
作者 Toqeer Ahmed Asad Waqar +4 位作者 Essam A.Al-Ammar Wonsuk Ko Yongki Kim Muhammad Aamir Habib Ur Rahman Habib 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第5期996-1010,共15页
At present,the power system is more inclined towards disturbances,such as voltage variations and unbalanced load conditions,due to the grid's complexity and load growth.These challenges emphasize the integration o... At present,the power system is more inclined towards disturbances,such as voltage variations and unbalanced load conditions,due to the grid's complexity and load growth.These challenges emphasize the integration of the compensating devices,such as battery storage(BS)and D-STATCOMs.In this regard,this current paper exhibits a novel energy management system(EMS)of a combined BS and D-STATCOM to compensate the power system during disturbances.The EMS is based on a fractional order sliding mode control(FOSMC)to drive the voltage source converters(VSCs)such that the active power is independently absorbed/injected by the BS,whereas the reactive power is independently absorbed/injected by the D-STATCOM depending upon the disturbance situation.FOSMC is a robust non-linear controller in which the Riemann-Liouville(RL)function is employed to design the sliding surface and the exponential reaching law is used to minimize the chattering phenomenon.The stability of the FOSMC in the proposed EMS is proved using the Lyapunov candidate function.In order to validate the performance of the proposed EMS,a model of a 400 V,180 kVA radial distributor along with a BS and D-STATCOM is simulated in MATLAB/Simulink environment in two test cases.The results prove that the proposed EMS with FOMSC effectively compensates the power system under voltage variations and unbalanced load conditions with rapid tracking,fast convergence and upright damping.Furthermore,the results have been compared with the classical proportional integral(PI)control and fixed frequency SMC(FFSMC),and they demonstrate the superiority of the proposed EMS with FOSMC in power system applications. 展开更多
关键词 battery storage D-STATCOM energy management system fractional order sliding mode control
原文传递
Active-reactive scheduling of active distribution system considering interactive load and battery storage
7
作者 Qixin Chen Xiangyu Zhao Dahua Gan 《Protection and Control of Modern Power Systems》 2017年第1期320-330,共11页
Distributed generation(DG)are critical components for active distribution system(ADS).However,this may be a serious impact on power system due to their volatility.To this problem,interactive load and battery storage m... Distributed generation(DG)are critical components for active distribution system(ADS).However,this may be a serious impact on power system due to their volatility.To this problem,interactive load and battery storage may be a best solution.This paper firstly investigates operation characteristics of interactive load and battery storage,including operation flexibility,inter-temporal operation relations and active-reactive power relations.Then,a multi-period coordinated activereactive scheduling model considering interactive load and battery storage is proposed in order to minimize overall operation costs over a specific duration of time.The model takes into accounts operation characteristics of interactive load and battery storage and focuses on coordination between DGs and them.Finally,validity and effectiveness of the proposed model are demonstrated based on case study of a medium-voltage 135-bus distribution system. 展开更多
关键词 Active distribution system Active-reactive scheduling Interactive load battery storage
原文传递
A distributed VSG control method for a battery energy storage system with a cascaded H-bridge in a grid-connected mode 被引量:4
8
作者 Yichi Cai Donglian Qi 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期343-352,共10页
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ... With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method. 展开更多
关键词 VSG Cascaded H-bridge converters battery energy storage system Renewable energy integration
下载PDF
Battery Energy Storage to Strengthen the Wind Generator in Integrated Power System 被引量:2
9
作者 Sharad W. Mohod Mohan V. Aware 《Journal of Electronic Science and Technology》 CAS 2011年第1期23-30,共8页
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.... The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers. 展开更多
关键词 battery energy storage power quality wind energy generating system.
下载PDF
Stochastic Linear Programming for Optimal Planning of Battery Storage Systems Under Unbalanced-uncertain Conditions 被引量:1
10
作者 Reza Hemmati Hasan Mehrjerdi 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第5期971-980,共10页
Battery energy storage system(BESS)has already been studied to deal with uncertain parameters of the electrical systems such as loads and renewable energies.However,the BESS have not been properly studied under unbala... Battery energy storage system(BESS)has already been studied to deal with uncertain parameters of the electrical systems such as loads and renewable energies.However,the BESS have not been properly studied under unbalanced operation of power grids.This paper aims to study the modelling and operation of BESS under unbalanced-uncertain conditions in the power grids.The proposed model manages the BESS to optimize energy cost,deal with load uncertainties,and settle the unbalanced loading at the same time.The three-phase unbalanced-uncertain loads are modelled and the BESSs are utilized to produce separate charging/discharging pattern on each phase to remove the unbalanced condition.The IEEE 69-bus grid is considered as case study.The load uncertainty is developed by Gaussian probability function and the stochastic programming is adopted to tackle the uncertainties.The model is formulated as mixed-integer linear programming and solved by GAMS/CPLEX.The results demonstrate that the model is able to deal with the unbalanced-uncertain conditions at the same time.The model also minimizes the operation cost and satisfies all security constraints of power grid. 展开更多
关键词 battery energy storage system(BESS) singlephase storage planning unbalanced loading UNCERTAINTY
原文传递
Multifunction Battery Energy Storage System for Distribution Networks
11
作者 Omar H.Abdalla Gamal Abdel-Salam Azza A.A.Mostafa 《Energy Engineering》 EI 2022年第2期569-589,共21页
Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribu... Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribution network’s challenges,which affect network performance,are:(i)Load disconnection or technical constraints violation,which may happen during reconfiguration after fault,(ii)Unpredictable power generation change due to Photovoltaic(PV)penetration,(iii)Undesirable PV reverse power,and(iv)Low Load Factor(LF)which may affect electricity price.In this paper,the BESS is used to support distribution networks in reconfiguration after a fault,increasing Photovoltaic(PV)penetration,cutting peak load,and loading valley filling.The paper presents a methodology for BESS optimal locations and sizing considering technical constraints during reconfiguration after a fault and PV power generation changes.For determining themaximumpower generation change due to PV,actual power registration of connected PV plants in South Cairo Electricity Distribution Company(SCEDC)was considered for a year.In addition,the paper provides a procedure for distribution network operator to employ the proposed BESS to perform multi functions such as:the ability to absorb PV power surplus,cut peak load and fill load valley for improving network’s performances.The methodology is applied to a modified IEEE 37-node and a real network part consisting of 158 nodes in SCEDC zone.The simulation studies are performed using the DIgSILENT PowerFactory software andDPL programming language.The Mixed Integer Linear Programming optimization technique(MILP)in MATLAB is employed to choose the best locations and sizing of BESS. 展开更多
关键词 battery energy storage system photovoltaic penetration peak load reduction valley filling MILP optimization
下载PDF
Typical Application Scenarios and Economic Benefit Evaluation Methods of Battery Energy Storage System
12
作者 Ming Zeng Haibin Cao +4 位作者 Ting Pan Pinduan Hu Shi Tian Lijun Zhong Zhi Ling 《Energy Engineering》 EI 2022年第4期1569-1586,共18页
Energy storage system is an important means to improve the flexibility and safety of traditional power system,but it has the problem of high cost and unclear value recovery path.In this paper,the typical application s... Energy storage system is an important means to improve the flexibility and safety of traditional power system,but it has the problem of high cost and unclear value recovery path.In this paper,the typical application scenarios of energy storage system are summarized and analyzed from the perspectives of user side,power grid side and power generation side.Based on the typical application scenarios,the economic benefit assessment framework of energy storage system including value,time and efficiency indicators is proposed.Typical battery energy storage projects are selected for economic benefit calculation according to different scenarios,and key factors are selected for sensitivity analysis.Finally,the key factors affecting economic benefit of the energy storage system are analyzed. 展开更多
关键词 battery energy storage system application scenarios economic benefit evaluation sensitivity analysis
下载PDF
Charging-rate-based Battery Energy Storage System in Wind Farm and Battery Storage Cooperation Bidding Problem
13
作者 Zihang Qiu Wang Zhang +4 位作者 Shuai Lu Chaojie Li Jingbo Wang Ke Meng Zhaoyang Dong 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第3期659-668,共10页
Wind power has been proven to have the ability to participate in the frequency modulation(FM)market.Using batteries to improve wind power stability can better aid wind farms participating in the FM market.Battery ener... Wind power has been proven to have the ability to participate in the frequency modulation(FM)market.Using batteries to improve wind power stability can better aid wind farms participating in the FM market.Battery energy storage system(BESS)has a promising future in applying regulation and load management in the power grid.For regulation services,normally,the regulation power prediction is estimated based on the required maximum regulation capacity;the power needed for the specific regulation service is unknown to the BESS owner.However,this information is needed in the regulation model when formulating the linearised BESS model with a constraint on the state of charge(SoC).This compromises the accuracy of the model greatly when it is applied for regulation service.Moreover,different control strategies can be employed by BESS.However,the current depth of discharge(DoD)based models have difficulties in being used in a linearization problem.Due to the consideration of the control strategy,the model becomes highly nonlinear and cannot be solved.In this paper,a charging rate(C-rate)based model is introduced,which can consider different control strategies of a BESS for cooperation with wind farms to participate in wind farm estimation error compensation,load management,energy bid,and regulation bid.First,the limitation of conventional BESS models are listed,and a new C-rate-based model is introduced.Then the C-rate-based BESS model is adopted in a wind farm and BESS cooperation scheme.Finally,experimental studies are carried out,and the DoD model and C-rate model optimization results are compared to prove the rationality of the C-rate model. 展开更多
关键词 C-rate based battery energy storage system model wind farm estimation error compensation
原文传递
Evaluating the reliability of distributed photovoltaic energy system and storage against household blackout 被引量:4
14
作者 Yimeng Sun Jie Gao +3 位作者 Jianxiao Wang Ziyang Huang Gengyin Li Ming Zhou 《Global Energy Interconnection》 CAS CSCD 2021年第1期18-27,共10页
Distributed energy resources have been proven to be an effective and promising solution to enhance power system resilience and improve household-level reliability.In this paper,we propose a method to evaluate the reli... Distributed energy resources have been proven to be an effective and promising solution to enhance power system resilience and improve household-level reliability.In this paper,we propose a method to evaluate the reliability value of a photovoltaic(PV)energy system with a battery storage system(BSS)by considering the probability of grid outages causing household blackouts.Considering this reliability value,which is the economic profit and capital cost of PV+BSS,a simple formula is derived to calculate the optimal planning strategy.This strategy can provide household-level customers with a simple and straightforward expression for invested PV+BSS capacity.Case studies on 600 households located in eight zones of the US for the period of 2006 to 2015 demonstrate that adding the reliability value to economic profit allows households to invest in a larger PV+BSS and avoid loss of load caused by blackouts.Owing to the differences in blackout hours,households from the 8 zones express distinct willingness to install PV+BSS.The greater the probability of blackout,the greater revenue that household can get from the PV+BSS.The simulation example shows that the planning strategy obtained by proposed model has good economy in the actual operation and able to reduce the economic risk of power failure of the household users.This model can provide household with an easy and straightforward investment strategy of PV+BSS capacity. 展开更多
关键词 battery storage Distributed generation planning Household blackout Reliability value Realistic dataset
下载PDF
Improved Energy Management Strategy for Prosumer Buildings with Renewable Energy Sources and Battery Energy Storage Systems
15
作者 Pavitra Sharma Krishna Kumar Saini +1 位作者 Hitesh Datt Mathur Puneet Mishra 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期381-392,共12页
The concept of utilizing microgrids(MGs)to convert buildings into prosumers is gaining massive popularity because of its economic and environmental benefits.These pro-sumer buildings consist of renewable energy source... The concept of utilizing microgrids(MGs)to convert buildings into prosumers is gaining massive popularity because of its economic and environmental benefits.These pro-sumer buildings consist of renewable energy sources and usually install battery energy storage systems(BESSs)to deal with the uncertain nature of renewable energy sources.However,because of the high capital investment of BESS and the limitation of available energy,there is a need for an effective energy management strategy for prosumer buildings that maximizes the profit of building owner and increases the operating life span of BESS.In this regard,this paper proposes an improved energy management strategy(IEMS)for the prosumer building to minimize the operating cost of MG and degradation factor of BESS.Moreover,to estimate the practical operating life span of BESS,this paper utilizes a non-linear battery degradation model.In addition,a flexible load shifting(FLS)scheme is also developed and integrated into the proposed strategy to further improve its performance.The proposed strategy is tested for the real-time annual data of a grid-tied solar photovoltaic(PV)and BESS-powered AC-DC hybrid MG installed at a commercial building.Moreover,the scenario reduction technique is used to handle the uncertainty associated with generation and load demand.To validate the performance of the proposed strategy,the results of IEMS are compared with the well-established energy management strategies.The simulation results verify that the proposed strategy substantially increases the profit of the building owner and operating life span of BESS.Moreover,FLS enhances the performance of IEMS by further improving the financial profit of MG owner and the life span of BESS,thus making the operation of prosumer building more economical and efficient. 展开更多
关键词 Prosumer building battery energy storage system(BESS) battery degradation factor demand response energy management MICROGRID solar photovoltaic(PV)system
原文传递
Virtual Transmission Solution Based on Battery Energy Storage Systems to Boost Transmission Capacity
16
作者 Matías Agüero Jaime Peralta +5 位作者 Eugenio Quintana Victor Velar Anton Stepanov Hossein Ashourian Jean Mahseredjian Roberto Cárdenas 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期466-474,共9页
The increasing penetration of variable renewable energy(VRE)generation along with the decommissioning of conventional power plants in Chile,has raised several operational challenges in the Chilean National Power Grid(... The increasing penetration of variable renewable energy(VRE)generation along with the decommissioning of conventional power plants in Chile,has raised several operational challenges in the Chilean National Power Grid(NPG),including transmission congestion and VRE curtailment.To mitigate these limitations,an innovative virtual transmission solution based on battery energy storage systems(BESSs),known as grid booster(GB),has been proposed to increase the capacity of the main 500 kV corridor of the NPG.This paper analyzes the dynamic performance of the GB using a wide-area electromagnetic transient(EMT)model of the NPG.The GB project,composed of two 500 MVA BESS units at each extreme of the 500 kV corridor,allows increasing the transmission capacity for 15 min during N-1 contingencies,overcoming transmission limitations under normal operation conditions while maintaining system stability during faults.The dynamic behavior of the GB is also analyzed to control power flow as well as voltage stability.The results show that the GB is an effective solution to allow greater penetration of VRE generation while maintaining system stability in the NPG. 展开更多
关键词 battery energy storage system(BESS) grid booster transient stability voltage stability electromagnetic transient(EMT)
原文传递
An Analytical Method for Delineating Feasible Region for PV Integration Capacities in Net-zero Distribution Systems Considering Battery Energy Storage System Flexibility
17
作者 Shida Zhang Shaoyun Ge +2 位作者 Hong Liu Guocheng Hou Chengshan Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期475-487,共13页
To provide guidance for photovoltaic(PV)system integration in net-zero distribution systems(DSs),this paper proposes an analytical method for delineating the feasible region for PV integration capacities(PVICs),where ... To provide guidance for photovoltaic(PV)system integration in net-zero distribution systems(DSs),this paper proposes an analytical method for delineating the feasible region for PV integration capacities(PVICs),where the impact of battery energy storage system(BESS)flexibility is considered.First,we introduce distributionally robust chance constraints on network security and energy/carbon net-zero requirements,which form the upper and lower bounds of the feasible region.Then,the formulation and solution of the feasible region is proposed.The resulting analytical expression is a set of linear inequalities,illustrating that the feasible region is a polyhedron in a high-dimensional space.A procedure is designed to verify and adjust the feasible region,ensuring that it satisfies network loss constraints under alternating current(AC)power flow.Case studies on the 4-bus system,the IEEE 33-bus system,and the IEEE 123-bus system verify the effectiveness of the proposed method.It is demonstrated that the proposed method fully captures the spatio-temporal coupling relationship among PVs,loads,and BESSs,while also quantifying the impact of this relationship on the boundaries of the feasible region. 展开更多
关键词 Net-zero distribution system photovoltaic(PV)integration capacity feasible region battery energy storage system(BESS).
原文传递
Multi-Scale Fusion Model Based on Gated Recurrent Unit for Enhancing Prediction Accuracy of State-of-Charge in Battery Energy Storage Systems
18
作者 Hao Liu Fengwei Liang +2 位作者 Tianyu Hu Jichao Hong Huimin Ma 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期405-414,共10页
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale featu... Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction. 展开更多
关键词 Electric vehicle battery energy storage system(BESS) state-of-charge(SOC)prediction gated recurrent unit(GRU) multi-scale fusion(MSF).
原文传递
Coordinated voltage regulation strategy of OLTC and BESS considering switching delay
19
作者 徐振宇 HUA Yongzhu +1 位作者 CUI Jiadong LI Chuangwei 《High Technology Letters》 EI CAS 2024年第2期138-145,共8页
When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap change... When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap changer(OLTC)can adjust the transformer winding tap to maintain the secondary side voltage within the normal range.However,the inevitable delay in switching transformer taps makes it difficult to respond quickly to voltage fluctuations.Moreover,switching the transformer taps frequently will decrease the service life of OLTC.In order to solve this critical issue,a cooperative voltage regulation strategy applied between the battery energy storage systems(BESSs)and OLTSs.is proposed By adjusting the charge and discharge power of BESSs,the OLTC can frequently switch the transformer taps to achieve rapid voltage regulation.The effectiveness of the proposed coordinated regulation strategy is verified in the IEEE 33 node distribution systems.The simulation results show that the proposed coordinated regulation strategy can stabilize the voltage of the distribution network within a normal range and reduce the frequency of tap switching,as such elongating the service life of the equipment. 展开更多
关键词 distributed power generation voltage regulation distribution network on-load tapcharger(OLTC) battery energy storage system(BESS)
下载PDF
Deep reinforcement learning for online scheduling of photovoltaic systems with battery energy storage systems
20
作者 Yaze Li Jingxian Wu Yanjun Pan 《Intelligent and Converged Networks》 EI 2024年第1期28-41,共14页
A new online scheduling algorithm is proposed for photovoltaic(PV)systems with battery-assisted energy storage systems(BESS).The stochastic nature of renewable energy sources necessitates the employment of BESS to bal... A new online scheduling algorithm is proposed for photovoltaic(PV)systems with battery-assisted energy storage systems(BESS).The stochastic nature of renewable energy sources necessitates the employment of BESS to balance energy supplies and demands under uncertain weather conditions.The proposed online scheduling algorithm aims at minimizing the overall energy cost by performing actions such as load shifting and peak shaving through carefully scheduled BESS charging/discharging activities.The scheduling algorithm is developed by using deep deterministic policy gradient(DDPG),a deep reinforcement learning(DRL)algorithm that can deal with continuous state and action spaces.One of the main contributions of this work is a new DDPG reward function,which is designed based on the unique behaviors of energy systems.The new reward function can guide the scheduler to learn the appropriate behaviors of load shifting and peak shaving through a balanced process of exploration and exploitation.The new scheduling algorithm is tested through case studies using real world data,and the results indicate that it outperforms existing algorithms such as Deep Q-learning.The online algorithm can efficiently learn the behaviors of optimum non-casual off-line algorithms. 展开更多
关键词 photovoltaic(PV) battery energy storage system(BESS) Markov decision process(MDP) deep deterministic policy gradient(DDPG)
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部