The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed wo...The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.展开更多
Classification can be regarded as dividing the data space into decision regions separated by decision boundaries.In this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective.Thus,a ...Classification can be regarded as dividing the data space into decision regions separated by decision boundaries.In this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective.Thus,a decision tree can be regarded as a classifier tree,in which each classifier on a non-root node is trained in decision regions of the classifier on the parent node.Meanwhile,the NBTree algorithm,which generates a classifier tree with the C4.5 algorithm and the naive Bayes classifier as the root and leaf classifiers respectively,can also be regarded as training naive Bayes classifiers in decision regions of the C4.5 algorithm.We propose a second division (SD) algorithm and three soft second division (SD-soft) algorithms to train classifiers in decision regions of the naive Bayes classifier.These four novel algorithms all generate two-level classifier trees with the naive Bayes classifier as root classifiers.The SD and three SD-soft algorithms can make good use of both the information contained in instances near decision boundaries,and those that may be ignored by the naive Bayes classifier.Finally,we conduct experiments on 30 data sets from the UC Irvine (UCI) repository.Experiment results show that the SD algorithm can obtain better generali-zation abilities than the NBTree and the averaged one-dependence estimators (AODE) algorithms when using the C4.5 algorithm and support vector machine (SVM) as leaf classifiers.Further experiments indicate that our three SD-soft algorithms can achieve better generalization abilities than the SD algorithm when argument values are selected appropriately.展开更多
Debris flow triggered by rainfall that accompanies a volcanic eruption is a serious secondary impact of a volcanic disaster.The probability of debris flow events can be estimated based on the prior information of rain...Debris flow triggered by rainfall that accompanies a volcanic eruption is a serious secondary impact of a volcanic disaster.The probability of debris flow events can be estimated based on the prior information of rainfall from historical and geomorphological data that are presumed to relate to debris flow occurrence.In this study,a debris flow disaster warning system was developed by applying the Na?¨ve Bayes Classifier(NBC).The spatial likelihood of the hazard is evaluated at a small subbasin scale by including high-resolution rainfall measurements from X-band polarimetric weather radar,a topographic factor,and soil type as predictors.The study was conducted in the Gendol River Basin of Mount Merapi,one of the most active volcanoes in Indonesia.Rainfall and debris flow occurrence data were collected for the upper Gendol River from October 2016 to February 2018 and divided into calibration and validation datasets.The NBC was used to estimate the status of debris flow incidences displayed in the susceptibility map that is based on the posterior probability from the predictors.The system verification was performed by quantitative dichotomous quality indices along with a contingency table.Using the validation datasets,the advantage of the NBC for estimating debris flow occurrence is confirmed.This work contributes to existing knowledge on estimating debris flow susceptibility through the data mining approach.Despite the existence of predictive uncertainty,the presented system could contribute to the improvement of debris flow countermeasures in volcanic regions.展开更多
The Washington,DC crash statistic report for the period from 2013 to 2015 shows that the city recorded about 41789 crashes at unsignalized intersections,which resulted in 14168 injuries and 51 fatalities.The economic ...The Washington,DC crash statistic report for the period from 2013 to 2015 shows that the city recorded about 41789 crashes at unsignalized intersections,which resulted in 14168 injuries and 51 fatalities.The economic cost of these fatalities has been estimated to be in the millions of dollars.It is therefore necessary to investigate the predictability of the occurrence of theses crashes,based on pertinent factors,in order to provide mitigating measures.This research focused on the development of models to predict the injury severity of crashes using support vector machines(SVMs)and Gaussian naïve Bayes classifiers(GNBCs).The models were developed based on 3307 crashes that occurred from 2008 to 2015.Eight SVM models and a GNBC model were developed.The most accurate model was the SVM with a radial basis kernel function.This model predicted the severity of an injury sustained in a crash with an accuracy of approximately 83.2%.The GNBC produced the worst-performing model with an accuracy of 48.5%.These models will enable transport officials to identify crash-prone unsignalized intersections to provide the necessary countermeasures beforehand.展开更多
An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detecti...An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.展开更多
Hazards and disasters have always negative impacts on the way of life.Landslide is an overwhelming natural as well as man-made disaster that causes loss of natural resources and human properties throughout theworld.Th...Hazards and disasters have always negative impacts on the way of life.Landslide is an overwhelming natural as well as man-made disaster that causes loss of natural resources and human properties throughout theworld.The present study aimed to assess and compare the prediction efficiency of different models in landslide susceptibility in the Kysuca river basin,Slovakia.In this regard,the fuzzy decision-making trial and evaluation laboratory combining with the analytic network process(FDEMATEL-ANP),Naïve Bayes(NB)classifier,and random forest(RF)classifier were considered.Initially,a landslide inventory map was produced with 2000 landslide and nonlandslide points by randomly dividedwith a ratio of 70%:30%for training and testing,respectively.The geospatial database for assessing the landslide susceptibility was generated with the help of 16 landslide conditioning factors by allowing for topographical,hydrological,lithological,and land cover factors.The ReliefF methodwas considered for determining the significance of selected conditioning factors and inclusion in the model building.Consequently,the landslide susceptibility maps(LSMs)were generated using the FDEMATEL-ANP,Naïve Bayes(NB)classifier,and random forest(RF)classifier models.Finally,the area under curve(AUC)and different arithmetic evaluation were used for validating and comparing the results and models.The results revealed that random forest(RF)classifier is a promising and optimum model for landslide susceptibility in the study area with a very high value of area under curve(AUC=0.954),lower value of mean absolute error(MAE=0.1238)and root mean square error(RMSE=0.2555),and higher value of Kappa index(K=0.8435)and overall accuracy(OAC=92.2%).展开更多
An effective domain ontology automatically constructed is proposed in this paper. The main concept is using the Formal Concept Analysis to automatically establish domain ontology. Finally, the ontology is acted as the...An effective domain ontology automatically constructed is proposed in this paper. The main concept is using the Formal Concept Analysis to automatically establish domain ontology. Finally, the ontology is acted as the base for the Naive Bayes classifier to approve the effectiveness of the domain ontology for document classification. The 1752 documents divided into 10 categories are used to assess the effectiveness of the ontology, where 1252 and 500 documents are the training and testing documents, respectively. The Fl-measure is as the assessment criteria and the following three results are obtained. The average recall of Naive Bayes classifier is 0.94. Therefore, in recall, the performance of Naive Bayes classifier is excellent based on the automatically constructed ontology. The average precision of Naive Bayes classifier is 0.81. Therefore, in precision, the performance of Naive Bayes classifier is gored based on the automatically constructed ontology. The average Fl-measure for 10 categories by Naive Bayes classifier is 0.86. Therefore, the performance of Naive Bayes classifier is effective based on the automatically constructed ontology in the point of F 1-measure. Thus, the domain ontology automatically constructed could indeed be acted as the document categories to reach the effectiveness for document classification.展开更多
Hardware security remains as a major concern in the circuit design flow.Logic block based encryption has been widely adopted as a simple but effective protection method.In this paper,the potential threat arising from ...Hardware security remains as a major concern in the circuit design flow.Logic block based encryption has been widely adopted as a simple but effective protection method.In this paper,the potential threat arising from the rapidly developing field,i.e.,machine learning,is researched.To illustrate the challenge,this work presents a standard attack paradigm,in which a three-layer neural network and a naive Bayes classifier are utilized to exemplify the key-guessing attack on logic encryption.Backed with validation results obtained from both combinational and sequential benchmarks,the presented attack scheme can specifically accelerate the decryption process of partial keys,which may serve as a new perspective to reveal the potential vulnerability for current anti-attack designs.展开更多
文摘The Internet of Things(IoT)is a growing technology that allows the sharing of data with other devices across wireless networks.Specifically,IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks.In this framework,a Covariance Linear Learning Embedding Selection(CL2ES)methodology is used at first to extract the features highly associated with the IoT intrusions.Then,the Kernel Distributed Bayes Classifier(KDBC)is created to forecast attacks based on the probability distribution value precisely.In addition,a unique Mongolian Gazellas Optimization(MGO)algorithm is used to optimize the weight value for the learning of the classifier.The effectiveness of the proposed CL2ES-KDBC framework has been assessed using several IoT cyber-attack datasets,The obtained results are then compared with current classification methods regarding accuracy(97%),precision(96.5%),and other factors.Computational analysis of the CL2ES-KDBC system on IoT intrusion datasets is performed,which provides valuable insight into its performance,efficiency,and suitability for securing IoT networks.
基金supported by the National Natural Science Foundation of China (No.60970081)the National Basic Research Program (973) of China (No.2010CB327903)
文摘Classification can be regarded as dividing the data space into decision regions separated by decision boundaries.In this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective.Thus,a decision tree can be regarded as a classifier tree,in which each classifier on a non-root node is trained in decision regions of the classifier on the parent node.Meanwhile,the NBTree algorithm,which generates a classifier tree with the C4.5 algorithm and the naive Bayes classifier as the root and leaf classifiers respectively,can also be regarded as training naive Bayes classifiers in decision regions of the C4.5 algorithm.We propose a second division (SD) algorithm and three soft second division (SD-soft) algorithms to train classifiers in decision regions of the naive Bayes classifier.These four novel algorithms all generate two-level classifier trees with the naive Bayes classifier as root classifiers.The SD and three SD-soft algorithms can make good use of both the information contained in instances near decision boundaries,and those that may be ignored by the naive Bayes classifier.Finally,we conduct experiments on 30 data sets from the UC Irvine (UCI) repository.Experiment results show that the SD algorithm can obtain better generali-zation abilities than the NBTree and the averaged one-dependence estimators (AODE) algorithms when using the C4.5 algorithm and support vector machine (SVM) as leaf classifiers.Further experiments indicate that our three SD-soft algorithms can achieve better generalization abilities than the SD algorithm when argument values are selected appropriately.
基金supported by the Science and Technology Research Partnership for Sustainable Development(SATREPS)Japan Science and Technology Agency(JST)the Japan International Cooperation Agency(JICA)
文摘Debris flow triggered by rainfall that accompanies a volcanic eruption is a serious secondary impact of a volcanic disaster.The probability of debris flow events can be estimated based on the prior information of rainfall from historical and geomorphological data that are presumed to relate to debris flow occurrence.In this study,a debris flow disaster warning system was developed by applying the Na?¨ve Bayes Classifier(NBC).The spatial likelihood of the hazard is evaluated at a small subbasin scale by including high-resolution rainfall measurements from X-band polarimetric weather radar,a topographic factor,and soil type as predictors.The study was conducted in the Gendol River Basin of Mount Merapi,one of the most active volcanoes in Indonesia.Rainfall and debris flow occurrence data were collected for the upper Gendol River from October 2016 to February 2018 and divided into calibration and validation datasets.The NBC was used to estimate the status of debris flow incidences displayed in the susceptibility map that is based on the posterior probability from the predictors.The system verification was performed by quantitative dichotomous quality indices along with a contingency table.Using the validation datasets,the advantage of the NBC for estimating debris flow occurrence is confirmed.This work contributes to existing knowledge on estimating debris flow susceptibility through the data mining approach.Despite the existence of predictive uncertainty,the presented system could contribute to the improvement of debris flow countermeasures in volcanic regions.
文摘The Washington,DC crash statistic report for the period from 2013 to 2015 shows that the city recorded about 41789 crashes at unsignalized intersections,which resulted in 14168 injuries and 51 fatalities.The economic cost of these fatalities has been estimated to be in the millions of dollars.It is therefore necessary to investigate the predictability of the occurrence of theses crashes,based on pertinent factors,in order to provide mitigating measures.This research focused on the development of models to predict the injury severity of crashes using support vector machines(SVMs)and Gaussian naïve Bayes classifiers(GNBCs).The models were developed based on 3307 crashes that occurred from 2008 to 2015.Eight SVM models and a GNBC model were developed.The most accurate model was the SVM with a radial basis kernel function.This model predicted the severity of an injury sustained in a crash with an accuracy of approximately 83.2%.The GNBC produced the worst-performing model with an accuracy of 48.5%.These models will enable transport officials to identify crash-prone unsignalized intersections to provide the necessary countermeasures beforehand.
文摘An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.
文摘Hazards and disasters have always negative impacts on the way of life.Landslide is an overwhelming natural as well as man-made disaster that causes loss of natural resources and human properties throughout theworld.The present study aimed to assess and compare the prediction efficiency of different models in landslide susceptibility in the Kysuca river basin,Slovakia.In this regard,the fuzzy decision-making trial and evaluation laboratory combining with the analytic network process(FDEMATEL-ANP),Naïve Bayes(NB)classifier,and random forest(RF)classifier were considered.Initially,a landslide inventory map was produced with 2000 landslide and nonlandslide points by randomly dividedwith a ratio of 70%:30%for training and testing,respectively.The geospatial database for assessing the landslide susceptibility was generated with the help of 16 landslide conditioning factors by allowing for topographical,hydrological,lithological,and land cover factors.The ReliefF methodwas considered for determining the significance of selected conditioning factors and inclusion in the model building.Consequently,the landslide susceptibility maps(LSMs)were generated using the FDEMATEL-ANP,Naïve Bayes(NB)classifier,and random forest(RF)classifier models.Finally,the area under curve(AUC)and different arithmetic evaluation were used for validating and comparing the results and models.The results revealed that random forest(RF)classifier is a promising and optimum model for landslide susceptibility in the study area with a very high value of area under curve(AUC=0.954),lower value of mean absolute error(MAE=0.1238)and root mean square error(RMSE=0.2555),and higher value of Kappa index(K=0.8435)and overall accuracy(OAC=92.2%).
文摘An effective domain ontology automatically constructed is proposed in this paper. The main concept is using the Formal Concept Analysis to automatically establish domain ontology. Finally, the ontology is acted as the base for the Naive Bayes classifier to approve the effectiveness of the domain ontology for document classification. The 1752 documents divided into 10 categories are used to assess the effectiveness of the ontology, where 1252 and 500 documents are the training and testing documents, respectively. The Fl-measure is as the assessment criteria and the following three results are obtained. The average recall of Naive Bayes classifier is 0.94. Therefore, in recall, the performance of Naive Bayes classifier is excellent based on the automatically constructed ontology. The average precision of Naive Bayes classifier is 0.81. Therefore, in precision, the performance of Naive Bayes classifier is gored based on the automatically constructed ontology. The average Fl-measure for 10 categories by Naive Bayes classifier is 0.86. Therefore, the performance of Naive Bayes classifier is effective based on the automatically constructed ontology in the point of F 1-measure. Thus, the domain ontology automatically constructed could indeed be acted as the document categories to reach the effectiveness for document classification.
基金supported by the 111 Project under Grant No.B18001the National Key Research and Development Program of China under Grant No.2018YFB2202605+1 种基金the Guangdong Science and Technology Project of China under Grant No.2019B010155002the National Natural Science Foundation of China under Grant No.61672054.
文摘Hardware security remains as a major concern in the circuit design flow.Logic block based encryption has been widely adopted as a simple but effective protection method.In this paper,the potential threat arising from the rapidly developing field,i.e.,machine learning,is researched.To illustrate the challenge,this work presents a standard attack paradigm,in which a three-layer neural network and a naive Bayes classifier are utilized to exemplify the key-guessing attack on logic encryption.Backed with validation results obtained from both combinational and sequential benchmarks,the presented attack scheme can specifically accelerate the decryption process of partial keys,which may serve as a new perspective to reveal the potential vulnerability for current anti-attack designs.