Irradiation-induced defects frequently impede the slip of dislocations, resulting in a sharp decline in the performance of nuclear reactor structural materials, particularly core structural materials. In the present w...Irradiation-induced defects frequently impede the slip of dislocations, resulting in a sharp decline in the performance of nuclear reactor structural materials, particularly core structural materials. In the present work, molecular dynamics method is used to investigate the interactions between edge dislocations and three typical irradiation-induced defects(void,Frank loop, and stacking fault tetrahedron) with the sizes of 3 nm, 5 nm, and 7 nm at different temperatures in Fe–10Ni–20Cr alloy. The critical resolved shear stresses(CRSSs) are compared among different defect types after interacting with edge dislocations. The results show that the CRSS decreases with temperature increasing and defect size decreasing for each defect type during the interaction with edge dislocations, except for the case of 3-nm Frank loops at 900 K. According to a comparison, the CRSS in Frank loop is significantly higher than that of others of the same size, which is due to the occurrence of unfaulting and formation of superjog or stacking-fault complex during the interaction. The atomic evolution of irradiation-induced defects after interacting with dislocations can provide a novel insight into the design of new structural materials.展开更多
Based on the general theory of dislocation and kink, we have constructed the three kink models corresponding to the 1/2 (111){011} and 1/2 (111){112} edge dislocations (EDs) in bcc Fe using the molecular dynamic...Based on the general theory of dislocation and kink, we have constructed the three kink models corresponding to the 1/2 (111){011} and 1/2 (111){112} edge dislocations (EDs) in bcc Fe using the molecular dynamics method. We found that the geometric structure of a kink depends on the type of ED and the structural energies of the atom sites in the dislocation core region, as well as the geometric symmetry of the dislocation core and the characteristic of the stacking sequence of atomic plane along the dislocation line. The formation energies and widths of the kinks on the 1/2 (111){011} and 1/2 (111){112} EDs are calculated, the formation energies are 0.05eV and 0.04eV, and widths are 6.02b and 6.51b, respectively (b is the magnitude of the Burgers vector). The small formation energies indicate that the formation of kink in the edge dislocation is very easy in bcc Fe.展开更多
Using the molecular dynamics method,we have constructed two kink models corresponding to the 〈100〉{010} and 〈100〉{011} edge dislocations (EDs) in body centred cubic (bcc) Fe. It is found that the geometric structu...Using the molecular dynamics method,we have constructed two kink models corresponding to the 〈100〉{010} and 〈100〉{011} edge dislocations (EDs) in body centred cubic (bcc) Fe. It is found that the geometric structure of a kink depends on the type of edge dislocation and the structural energies of the atoms sites in the dislocation core region. The formation energies,migration energies and widths of the kinks in different types of EDs are calculated. The results show that formation and migration of the kink in the 〈100〉{010} edge dislocation are difficult. The 〈100〉{011} edge dislocation moves primarily through kink nucleation,rather than kink migration.展开更多
基金supported by the National MCF Energy Research and Development Program,China (Grant No. 2018YFE0308101)the China National Nuclear Corporation Centralized Research and Development Project (Grant No. FY18000120)。
文摘Irradiation-induced defects frequently impede the slip of dislocations, resulting in a sharp decline in the performance of nuclear reactor structural materials, particularly core structural materials. In the present work, molecular dynamics method is used to investigate the interactions between edge dislocations and three typical irradiation-induced defects(void,Frank loop, and stacking fault tetrahedron) with the sizes of 3 nm, 5 nm, and 7 nm at different temperatures in Fe–10Ni–20Cr alloy. The critical resolved shear stresses(CRSSs) are compared among different defect types after interacting with edge dislocations. The results show that the CRSS decreases with temperature increasing and defect size decreasing for each defect type during the interaction with edge dislocations, except for the case of 3-nm Frank loops at 900 K. According to a comparison, the CRSS in Frank loop is significantly higher than that of others of the same size, which is due to the occurrence of unfaulting and formation of superjog or stacking-fault complex during the interaction. The atomic evolution of irradiation-induced defects after interacting with dislocations can provide a novel insight into the design of new structural materials.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB605102)the Science Foundation of Central South University of Forestry & Technology,China (Grant No 06y016)
文摘Based on the general theory of dislocation and kink, we have constructed the three kink models corresponding to the 1/2 (111){011} and 1/2 (111){112} edge dislocations (EDs) in bcc Fe using the molecular dynamics method. We found that the geometric structure of a kink depends on the type of ED and the structural energies of the atom sites in the dislocation core region, as well as the geometric symmetry of the dislocation core and the characteristic of the stacking sequence of atomic plane along the dislocation line. The formation energies and widths of the kinks on the 1/2 (111){011} and 1/2 (111){112} EDs are calculated, the formation energies are 0.05eV and 0.04eV, and widths are 6.02b and 6.51b, respectively (b is the magnitude of the Burgers vector). The small formation energies indicate that the formation of kink in the edge dislocation is very easy in bcc Fe.
基金Supported by "973" Project from the Ministry of Science and Technology of China (Grant No. 2006CB605102)the National Natural Science Foundation of China (Grant No. 90306016)
文摘Using the molecular dynamics method,we have constructed two kink models corresponding to the 〈100〉{010} and 〈100〉{011} edge dislocations (EDs) in body centred cubic (bcc) Fe. It is found that the geometric structure of a kink depends on the type of edge dislocation and the structural energies of the atoms sites in the dislocation core region. The formation energies,migration energies and widths of the kinks in different types of EDs are calculated. The results show that formation and migration of the kink in the 〈100〉{010} edge dislocation are difficult. The 〈100〉{011} edge dislocation moves primarily through kink nucleation,rather than kink migration.