Proper regulation of metal-nitrogen carbon(M-N-C)materials derived from zeolitic imidazolate frameworks(ZIFs)is essential to enhance the oxygen reduction reaction(ORR)performance.However,most of the reports focus on t...Proper regulation of metal-nitrogen carbon(M-N-C)materials derived from zeolitic imidazolate frameworks(ZIFs)is essential to enhance the oxygen reduction reaction(ORR)performance.However,most of the reports focus on the component regulation,and the structure regulation of ZIFs-derived M-N-C materials by a simple preparation method has been barely reported.Herein,using a one-step electrospinning method with subsequent pyrolysis,we have prepared a bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber(Co-N-C/CNF)composite electrocatalyst with the porous carbon nanocages arranged one by one in the highly conductive carbon nanofibers.Profiting from the fully exposed active sites and improved conductivity,the Co-NC/CNF catalyst exhibits an excellent ORR performance even surpassing the commercial Pt/C catalyst.Density functional theory(DFT)results demonstrate that the CoNP-N1-C2 active sites on Co-N-C/CNF make the core contribution to the improvement of ORR properties.Moreover,the zinc-air battery(ZAB)based on the Co-N-C/CNF catalyst also shows outstanding discharge performance.This study provides a new strategy for the preparation and structural design for ZIFs-derived M-N-C materials as efficient ORR catalysts.展开更多
Numerical study is performed to investigate the swirling flow around a rotating disk in a cylindrical casing. The disk is supported by a thin driving shaft and it is settled at the center of the casing. The flow devel...Numerical study is performed to investigate the swirling flow around a rotating disk in a cylindrical casing. The disk is supported by a thin driving shaft and it is settled at the center of the casing. The flow develops in the radial clearance between the disk tip and the side wall of the casing as well as in the axial clearance between the disk surfaces and the stationary circular end walls of the casing. Keeping the geometry of the casing and the size of the radial clearance constant, we compared the flows developing in the fields with small, medium and large axial clearances at the Reynolds number from 6000 to 30,000. When the rotation rate of the disk is small, steady Taylor vortices appear in the radial clearance. As the flow is accelerated, several tens of small vortices emerge around the disk tip. The axial position of these small vortices is near the end wall or the axial midplane of the casing. When the small vortices appear on one side of the end walls, the flow is not permanent but transitory, and a polygonal flow with larger several vortices appears. With further increase of the rotation rate, spiral structures emerge. The Reynolds number for the onset of the spiral structures is much smaller than that for the onset of the spiral rolls in rotor-stator disk flows with no radial clearance. The spiral structures in the present study are formed by the disturbances that are driven by a centrifugal instability in the radial clearance and they are penetrated radially inward along the circular end walls of the casing.展开更多
基金The work was supported by the National Natural Science Foundation of China(Nos.52104314,51972287,U2004172,and 51502269)Natural Science Foundation of Henan Province(No.202300410368)+2 种基金the Special Project of Key Research Development and Promotion of Henan Province(No.222102240084)Sponsored by Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT001)the Foundation for University Key Teachers of Henan Province(No.2020GGJS009).
文摘Proper regulation of metal-nitrogen carbon(M-N-C)materials derived from zeolitic imidazolate frameworks(ZIFs)is essential to enhance the oxygen reduction reaction(ORR)performance.However,most of the reports focus on the component regulation,and the structure regulation of ZIFs-derived M-N-C materials by a simple preparation method has been barely reported.Herein,using a one-step electrospinning method with subsequent pyrolysis,we have prepared a bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber(Co-N-C/CNF)composite electrocatalyst with the porous carbon nanocages arranged one by one in the highly conductive carbon nanofibers.Profiting from the fully exposed active sites and improved conductivity,the Co-NC/CNF catalyst exhibits an excellent ORR performance even surpassing the commercial Pt/C catalyst.Density functional theory(DFT)results demonstrate that the CoNP-N1-C2 active sites on Co-N-C/CNF make the core contribution to the improvement of ORR properties.Moreover,the zinc-air battery(ZAB)based on the Co-N-C/CNF catalyst also shows outstanding discharge performance.This study provides a new strategy for the preparation and structural design for ZIFs-derived M-N-C materials as efficient ORR catalysts.
文摘Numerical study is performed to investigate the swirling flow around a rotating disk in a cylindrical casing. The disk is supported by a thin driving shaft and it is settled at the center of the casing. The flow develops in the radial clearance between the disk tip and the side wall of the casing as well as in the axial clearance between the disk surfaces and the stationary circular end walls of the casing. Keeping the geometry of the casing and the size of the radial clearance constant, we compared the flows developing in the fields with small, medium and large axial clearances at the Reynolds number from 6000 to 30,000. When the rotation rate of the disk is small, steady Taylor vortices appear in the radial clearance. As the flow is accelerated, several tens of small vortices emerge around the disk tip. The axial position of these small vortices is near the end wall or the axial midplane of the casing. When the small vortices appear on one side of the end walls, the flow is not permanent but transitory, and a polygonal flow with larger several vortices appears. With further increase of the rotation rate, spiral structures emerge. The Reynolds number for the onset of the spiral structures is much smaller than that for the onset of the spiral rolls in rotor-stator disk flows with no radial clearance. The spiral structures in the present study are formed by the disturbances that are driven by a centrifugal instability in the radial clearance and they are penetrated radially inward along the circular end walls of the casing.