期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A Novel Hierarchical Porous 3D Structured Vanadium Nitride/Carbon Membranes for High-performance Supercapacitor Negative Electrodes 被引量:13
1
作者 Yage Wu Yunlong Yang +4 位作者 Xiaoning Zhao Yongtao Tan Ying Liu Zhen Wang Fen Ran 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期81-91,共11页
Transition-metal nitrides exhibit wide potential windows and good electrochemical performance, but usually experience imbalanced practical applications in the energy storage field due to aggregation, poor circulation ... Transition-metal nitrides exhibit wide potential windows and good electrochemical performance, but usually experience imbalanced practical applications in the energy storage field due to aggregation, poor circulation stability, and complicated syntheses. In this study, a novel and simple multiphase polymeric strategy was developed to fabricate hybrid vanadium nitride/carbon(VN/C) membranes for supercapacitor negative electrodes, in which VN nanoparticles were uniformly distributed in the hierarchical porous carbon 3D networks. The supercapacitor negative electrode based on VN/C membranes exhibited a high specific capacitance of 392.0 F g^(-1) at 0.5 A g^(-1) and an excellent rate capability with capacitance retention of 50.5% at 30 A g^(-1). For the asymmetric device fabricated using Ni(OH)_2//VN/C membranes, a high energy density of 43.0 Wh kg^(-1) at a power density of800 W kg^(-1) was observed. Moreover, the device also showed good cycling stability of 82.9% at a current density of 1.0 A g^(-1) after 8000 cycles. This work may throw a light on simply the fabrication of other high-performance transition-metal nitridebased supercapacitor or other energy storage devices. 展开更多
关键词 SUPERCAPACITORS Vanadium nitride/carbon 3D network Hierarchical porous structure
下载PDF
High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage 被引量:12
2
作者 Dongqin Su Man Huang +5 位作者 Junhao Zhang Xingmei Guo Jiale Chen Yanchun Xue Aihua Yuan Qinghong Kong 《Nano Research》 SCIE EI CAS CSCD 2020年第10期2862-2868,共7页
Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate a... Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g^−1 at 0.1 A·g^−1 and 242.5 mAh·g^−1 at 1 A·g^−1 for 2,500 cycles with exceptional rate capability of 5 A·g^−1 with reversible capacities of 201.2 mAh·g^−1. The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures. 展开更多
关键词 hierarchical porous carbon networks high N doping expanded interlayer spacing ANODE sodium-ion batteries
原文传递
In situ carbon nanotube clusters grown from three- dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li-S batteries 被引量:4
3
作者 Shizhi Huang Lingli Zhang +2 位作者 Jingyan Wang Jinliang Zhu Pei Kang Shen 《Nano Research》 SCIE EI CAS CSCD 2018年第3期1731-1743,共13页
Carbon nanotube (CNT) clusters grown in situ in three-dimensional (3D) porous graphene networks (3DG-CNTs), with integrated structure and remarkable electronic conductivity, are desirable S host materials for Li... Carbon nanotube (CNT) clusters grown in situ in three-dimensional (3D) porous graphene networks (3DG-CNTs), with integrated structure and remarkable electronic conductivity, are desirable S host materials for Li-S batteries. 3DG-CNT exhibits a high surface area (1,645 m^2·g^-1), superior electronic conductivity of 1,055 S·m^-1, and a 3D porous networked structure. Large clusters of CNTs anchored on the inner walls of 3D graphene networks act as capillaries, benefitting restriction of agglomeration by high contents of immersed S. Moreover, the capillary-like CNT clusters grown in situ in the pores efficiently form restricted spaces for Li polysulfides, significantly reducing the shuttling effect and promoting S utilization throughout the charge/discharge process. With an areal S mass loading of 81.6 wt.%, the 3DG-CNT/S electrode exhibits an initial specific capacity reaching 1,229 mA·h·g^-1 at 0.5 C and capacity decays of 0.044% and 0.059% per cycle at 0.5 and 1 C, respectively, over 500 cycles. The electrode material also reveals a remarkable rate performance and the large capacity of 812 mA·h·g^-1 at 3 C. 展开更多
关键词 in situ growth carbon nanotube three-dimensional (3D)graphene porous network Li-S battery
原文传递
Porous carbon-based thermally conductive materials:Fabrication,functions and applications
4
作者 Deyu Wang Xuan Wu +1 位作者 Gary Owens Haolan Xu 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第4期58-72,共15页
The demand for electronic devices has dramatically increased in the past few years.Efficient electronic devices require excellent thermal management systems to extend their operation time and prevent heat accumulation... The demand for electronic devices has dramatically increased in the past few years.Efficient electronic devices require excellent thermal management systems to extend their operation time and prevent heat accumulation from affecting performance.Carbonaceous materials are considered as one of the ideal thermal management materials due to their excellent physiochemical stability.In addition,since porous-structured carbon materials typically exhibit outstanding thermal conductivity,low density,and large contact area,they have attracted considerable attention from both academia and industry in the last decades.In this review,methods and strategies for the preparation of highly thermally conductive porous carbon-based materials and the factors that influence their thermal conductivity of the materials are summarized.The thermal performance of porous carbonaceous materials fabricated by different approaches and their applications are also discussed.Finally,the potential challenges and strategies for the development and applications of highly thermally conductive porous carbona-ceous materials are discussed. 展开更多
关键词 porous carbon-based materials Graphene networks carbon foams Thermal conductivity Solar steam generation
原文传递
From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes 被引量:1
5
作者 Ling Miao Xiaoyu Qian +7 位作者 Dazhang Zhu Ting Chen Guchuan Ping Yaokang Lv Wei Xiong Yafei Liu Lihua Gan Mingxian Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第7期1445-1449,共5页
Hierarchical porous carbons (HPCs) are obtained via in-situ activation of interpenetrating polymer networks (IPNs) obtained from simultaneous polymerization of resorcinol/formaldehyde (R/F) and polyacrylamide (PAM). T... Hierarchical porous carbons (HPCs) are obtained via in-situ activation of interpenetrating polymer networks (IPNs) obtained from simultaneous polymerization of resorcinol/formaldehyde (R/F) and polyacrylamide (PAM). The hierarchically micro-, meso-and macroporous structure of as-prepared HPCs is attributed to the synergistic pore-forming effect of PAM and KOH, including PAM decomposition, KOH chemical activation, and a foaming process of potassium polyacrylate formed by partial hydrolysis of PAM in KOH aqueous solution. The typical HPC electrode with the highest surface area (2544 m2/g) shows a high specific capacitance of 261 F/g at 1.0 A/g and a superior rate capability of 216 F/g at 20 A/g in alkaline electrolyte. Moreover, the electrode maintains the capacitance retention of 90.8% after 10000 chargingdischarging cycles at 1.0 A/g, exhibiting long cycling life. This study highlights a new avenue towards IPNs-derived carbons with unique pore structure for promising electrochemical applications. 展开更多
关键词 Hierarchical porous carbon Interpenetrating polymer networks IN-SITU ACTIVATION SUPERCAPACITOR ELECTRODE
原文传递
Regulation of the pore structure of carbon nanosheets based electrocatalyst for efficient polysulfides phase conversions
6
作者 Xiaoyang Liu Jingbo Zhang +5 位作者 Kangli Liu Shijie Zhang Rouhan Hou Xiaoyi Hu Peng Zhang Guosheng Shao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期37-46,共10页
The practical applications of lithium-sulfur(Li-S)batteries are hampered by the sluggish redox kinetics and polysulfides shuttle in the cyclic process,which leads to a series of problems including the loss of active m... The practical applications of lithium-sulfur(Li-S)batteries are hampered by the sluggish redox kinetics and polysulfides shuttle in the cyclic process,which leads to a series of problems including the loss of active materials and poor cycling efficiency.In this paper,the pore structures of carbon nanosheets based electrocatalysts were precisely controlled by regulating the content of water-soluble KCl template.The relationship between pore structures and Li-S electrochemical behavior was studied,which demonstrates a key influence of pore structure in polysulfides phase conversions.In the liquid-sloid redox reaction of polysulfides,the micropores and small mesopores(d<20 nm)exhibited little impact,while the meso-pores(d>20 nm)and macropores played a decisive role.As a typical exhibition,the nickel-embedded carbon nanosheets(Ni-CNS)with a high content of large mesopores and macropores can aid Li-S batteries in exhibiting stable cycling performance(760.1 mAh g^(-1)at 1 C after 300 cycles)and superior rate capac-ity(847.8 mAh g^(-1)at 2 C).Furthermore,even with high sulfur loading(8 mg cm^(−2))and low electrolyte(E/S is around 6μL mg^(-1)),the high area capacity of 7.7 mAh cm^(−2)at 0.05 C could be achieved.This work can provide a guideline for the design of the pore structure of carbon-based electrocatalysts toward high-efficiency sulfur species redox reactions,and afford a general,controllable,and simple approach to constructing high performance Li-S batteries. 展开更多
关键词 Hierarchical porous carbon network ELECTROCATALYST Molten salt templating method Modified separators Li-S batteries
原文传递
Porous carbon globules with moss-like surfaces from semi-biomass interpenetrating polymer network for efficient charge storage
7
作者 Guchuan Ping Ling Miao +7 位作者 Abuduheiremu Awati Xiaoyu Qian Ting Shi Yaokang Lv Yafei Liu Lihua Gan Mingxian Liu Dazhang Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3811-3816,共6页
The bio-nanotechnological fabrication of high-surface-area carbons has attracted widespread interest in supercapacitor applications by using readily-available natural products as raw materials or bio-templates,and is ... The bio-nanotechnological fabrication of high-surface-area carbons has attracted widespread interest in supercapacitor applications by using readily-available natural products as raw materials or bio-templates,and is expected to refine on pore accessibility for compact energy storage. Here, a renovated design strategy of semi-biomass interpenetrating polymer network(IPN) derived carbon is demonstrated through physically knitting the biomacromolecule(sodium alginate, SA) polymeric chains into the highly crosslinked resorcinol-formaldehyde(RF) network and subsequent thermochemical conversion. Moleculelevel interlacing forces in such IPN efficiently relieve the RF skeleton shrinkage when producing carbon,while the other SA network addresses the macrophase separation issue to sacrifice as an in-knitted porogen and a morphology-directing agent. As a result, porous carbon globules are equipped with moss-like surfaces and interconnected pore architecture for high accessible electrode surface(1013 m^(2)/g), and efficient electrochemical responses are reached with the specific capacitance of 312 F/g at 1 A/g. Taking the advantage of 9 mol/kg NaClO_(4) complex-solvent electrolyte, the voltage window is extended to 2.4 V,endowing the two-electrode device with the high energy delivery of 32.3 Wh/kg at 240 W/kg. 展开更多
关键词 porous carbon electrode Interpenetrating polymer network BIOMASS SUPERCAPACITOR Water-in-salt electrolyte
原文传递
Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions 被引量:6
8
作者 Shijie Zhang Yongshang Zhang +1 位作者 Guosheng Shao Peng Zhang 《Nano Research》 SCIE EI CSCD 2021年第11期3942-3951,共10页
Li-S batteries are considered as a highly promising candidate for the next-generation energy storage system, attributing to their tremendous energy density. However, the two-dimensional island nucleation-growth proces... Li-S batteries are considered as a highly promising candidate for the next-generation energy storage system, attributing to their tremendous energy density. However, the two-dimensional island nucleation-growth process of lithium sulfide leads to a thick insulating film covering the electrode, inducing slow electrons transfer and mass-transfer of ions and liquid sulfur species in working Li-S cells. Here, we demonstrate a bio-inspired strategy of constructing ant-nest-like hierarchical porous ultrathin carbon nanosheet networks with the implants of metallic nanoparticles electrocatalysts (HPC-MEC) as efficient nanoreactors enabling rapid mass transfer, via a simple and green NaCl template. Such nanoreactors with a large active surface area could effectively anchor polysulfides for mitigating the shuttle effect, facilitating uniformly thin Li2S film, and promoting the mass transfer for fast sulfur species conversions. This helps contribute to a continuously high sulfur utilization in Li-S batteries with the HPC-MEC reactors. As a typical exhibition, cobalt embedded hierarchical porous carbon (HPC-Co) could realize to deliver a remarkably high specific capacity of 1,540.6 mAh·g−1, an excellent rate performance of 878.8 mAh·g−1 at 2 C, and high area capacity of 11.6 mAh·cm−2 at a high sulfur load of 10 mg·cm−2 and low electrolyte/sulfur ratio of 5 µL·mg−1. 展开更多
关键词 sulfur species reactor hierarchical porous carbon network ELECTROCATALYST high sulfur loading low electrolyte/sulfur ratio
原文传递
Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage 被引量:4
9
作者 Ziliang Chen Renbing Wu +5 位作者 Hao Wang Kelvin H. L. Zhang Yun Song Feilong Wu Fang Fang Dalin Sun 《Nano Research》 SCIE EI CAS CSCD 2018年第2期966-978,共13页
Transition metal chalcogenides represent a class of the most promising alternative electrode materials for high-performance lithium-ion batteries (LIBs) owing to their high theoretical capacities. However, they suff... Transition metal chalcogenides represent a class of the most promising alternative electrode materials for high-performance lithium-ion batteries (LIBs) owing to their high theoretical capacities. However, they suffer from large volume expansion, particle agglomeration, and low conductivity during charge/discharge processes, leading to unsatisfactory energy storage performance. In order to address these issues, we rationally designed three-dimensional (3D) hybrid composites consisting of ZnSe nanodots uniformly confined within a N-doped porous carbon network (ZnSe ND@N-PC) obtained via a convenient pyrolysis process. When used as anodes for LIBs, the composites exhibited outstanding electrochemical performance, with a high reversible capacity (1,134 mA.h.g-1 at a current density of 600 mA.g-1 after 500 cycles) and excellent rate capability (696 and 474 mA.h.g-1 at current densities of 6.4 and 12.8 A.g-1, respectively). The significantly improved lithium storage performance can be attributed to the 3D architecture of the hybrid composites, which not only mitigated the internal mechanical stress induced by the volume change and formed a 3D conductive network during cycling, but also provided a large reactive area and reduced the lithium diffusion distance. The strategy reported here may open a new avenue for the design of other multi functional composites towards high-performance energy storage devices. 展开更多
关键词 hollow hybrid composite ZnSe nanodot porous carbon network lithium-ion batteries
原文传递
Capillary shrinkage of graphene oxide hydrogels 被引量:6
10
作者 Changsheng Qi Chong Luo +7 位作者 Ying Tao Wei Lv Chen Zhang Yaqian Deng Huan Li Junwei Han Guowei Ling Quan-Hong Yang 《Science China Materials》 SCIE EI CSCD 2020年第10期1870-1877,共8页
Conventional carbon materials cannot combine high density and high porosity,which are required in many applications,typically for energy storage under a limited space.A novel highly dense yet porous carbon has previou... Conventional carbon materials cannot combine high density and high porosity,which are required in many applications,typically for energy storage under a limited space.A novel highly dense yet porous carbon has previously been produced from a three-dimensional(3D)reduced graphene oxide(r-GO)hydrogel by evaporation-induced drying.Here the mechanism of such a network shrinkage in r-GO hydrogel is specifically illustrated by the use of water and 1,4-dioxane,which have a sole difference in surface tension.As a result,the surface tension of the evaporating solvent determines the capillary forces in the nanochannels,which causes shrinkage of the r-GO network.More promisingly,the selection of a solvent with a known surface tension can precisely tune the microstructure associated with the density and porosity of the resulting porous carbon,rendering the porous carbon materials great potential in practical devices with high volumetric performance. 展开更多
关键词 graphene oxides porous carbons HYDROGELS capillary force network shrinkage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部