通过高能电子束辐照(higll-energy electron beam,EB)法研究了氧气浓度对2,4-D降解的影响,结果表明:与饱和空气条件下对比,辐照过程中充入氧气明显提高2,4-D的降解效率,在饱和氧气和4kGy的辐照剂量条件下,2,4-D去除率达到92...通过高能电子束辐照(higll-energy electron beam,EB)法研究了氧气浓度对2,4-D降解的影响,结果表明:与饱和空气条件下对比,辐照过程中充入氧气明显提高2,4-D的降解效率,在饱和氧气和4kGy的辐照剂量条件下,2,4-D去除率达到92.5%,Cl-释放量为30.0~35.4mg/L,TOC去除率为22.9%.辐照过程中溶液的pH值与辐照剂量和氧气浓度关系不明显,均由9降为4左右.展开更多
The degradation characteristic of 4-bromdiphenyl ether (BDE-4) was investigated in different solutions.The study indicates that the process of direct degradation of this compound is dependent upon the bromine and th...The degradation characteristic of 4-bromdiphenyl ether (BDE-4) was investigated in different solutions.The study indicates that the process of direct degradation of this compound is dependent upon the bromine and the ether bond connected to diphenyl by electron beam.laser flash photolysis was employed to determine the degradation of each species (cationic,neutral,and anionic).From these data,intermediate products of BDE-4 degradation were shown for direct irradiationdegradation.The neutral radical was formed during the photolysis of these compounds.For all the compounds,diphenyl ether and hydroxybiphenyl were observed as common products.Reaction of the BDE-4 under electron beam was debromide.The debromide rate of BDE-4 at pH=5.5 is somewhat lower than that of BDE-4 at pH=10.0.The decomposition rate for BDE-4 is 99.8% at pH=10.0 on the dose of 14 kGy.BDE-4 from its radical could provide bromine ion into water and the cation radical of BDE-4 formed quickly recombine with hydrogen radical and formed phenyl ether.展开更多
The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exh...The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid" interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence of AI2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and AI2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cvcling.展开更多
In this study, we have investigated the degradation and primary radiolytic degradation mechanism of 4-tert-octylphenol (4-t-OP) by using of electron beam (EB) -irradiation. The results show that at an absorbed dose of...In this study, we have investigated the degradation and primary radiolytic degradation mechanism of 4-tert-octylphenol (4-t-OP) by using of electron beam (EB) -irradiation. The results show that at an absorbed dose of 10 kGy and an initial concentration of 25 mg·L -1 , the degradation of 4-t-OP in a methanol/water reduction system is higher than in a acetonitrile/water oxidation system by 19.4% and higher than in an acetone/water system by 26.8%, which is due to both of ·OH and e aq - playing an important role in the decomposition of 4-t-OP, although the latter is more effective. The degradation rate of 4-t-OP will decrease with increment of absorbed dose in a methanol/water solution, and increase with decrement of initial concentration at a constant absorbed dose. The degradation efficiency will also decrease with the addition of anions and H 2 O 2 into the solution. A system saturated with N 2 will make an increment in the degradation of 4-t-OP. The pH value of solution has been also found to affect the degradation efficiency, while the degradation is more efficient in alkaline conditions. Finally, the initial products involved in degradation reaction have been determined to be ethylbenzene, styrene, bicyclo[4.2.0]octa-1,3,5-triene, 2,2,4-trimethylpentane and p-tert-butyl-phenol, which may arise from e aq - attack at the position of the alkyl side chain of 4-t-OP molecule. The results have been revealed that EB irradiation is a promising method for degradation of 4-t-OP, and e aq - may be main reactive species to attack at the position of the alkyl side chain of 4-t-OP.展开更多
文摘通过高能电子束辐照(higll-energy electron beam,EB)法研究了氧气浓度对2,4-D降解的影响,结果表明:与饱和空气条件下对比,辐照过程中充入氧气明显提高2,4-D的降解效率,在饱和氧气和4kGy的辐照剂量条件下,2,4-D去除率达到92.5%,Cl-释放量为30.0~35.4mg/L,TOC去除率为22.9%.辐照过程中溶液的pH值与辐照剂量和氧气浓度关系不明显,均由9降为4左右.
基金supported by the National Natural Science Foundation of China (Grant Nos.40830744,40973072)the National Key Technology Research and Development Program in the 11th Five Year Plan of China (Grant Nos. 2008BAC32B03,2009BAA24B04)the Shanghai leading Academic Discipline Project (Grant No.S30109)
文摘The degradation characteristic of 4-bromdiphenyl ether (BDE-4) was investigated in different solutions.The study indicates that the process of direct degradation of this compound is dependent upon the bromine and the ether bond connected to diphenyl by electron beam.laser flash photolysis was employed to determine the degradation of each species (cationic,neutral,and anionic).From these data,intermediate products of BDE-4 degradation were shown for direct irradiationdegradation.The neutral radical was formed during the photolysis of these compounds.For all the compounds,diphenyl ether and hydroxybiphenyl were observed as common products.Reaction of the BDE-4 under electron beam was debromide.The debromide rate of BDE-4 at pH=5.5 is somewhat lower than that of BDE-4 at pH=10.0.The decomposition rate for BDE-4 is 99.8% at pH=10.0 on the dose of 14 kGy.BDE-4 from its radical could provide bromine ion into water and the cation radical of BDE-4 formed quickly recombine with hydrogen radical and formed phenyl ether.
文摘The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid" interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence of AI2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and AI2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cvcling.
基金Supported by National Natural Science Foundation of China(no.11025526,11175112 and 41073073)
文摘In this study, we have investigated the degradation and primary radiolytic degradation mechanism of 4-tert-octylphenol (4-t-OP) by using of electron beam (EB) -irradiation. The results show that at an absorbed dose of 10 kGy and an initial concentration of 25 mg·L -1 , the degradation of 4-t-OP in a methanol/water reduction system is higher than in a acetonitrile/water oxidation system by 19.4% and higher than in an acetone/water system by 26.8%, which is due to both of ·OH and e aq - playing an important role in the decomposition of 4-t-OP, although the latter is more effective. The degradation rate of 4-t-OP will decrease with increment of absorbed dose in a methanol/water solution, and increase with decrement of initial concentration at a constant absorbed dose. The degradation efficiency will also decrease with the addition of anions and H 2 O 2 into the solution. A system saturated with N 2 will make an increment in the degradation of 4-t-OP. The pH value of solution has been also found to affect the degradation efficiency, while the degradation is more efficient in alkaline conditions. Finally, the initial products involved in degradation reaction have been determined to be ethylbenzene, styrene, bicyclo[4.2.0]octa-1,3,5-triene, 2,2,4-trimethylpentane and p-tert-butyl-phenol, which may arise from e aq - attack at the position of the alkyl side chain of 4-t-OP molecule. The results have been revealed that EB irradiation is a promising method for degradation of 4-t-OP, and e aq - may be main reactive species to attack at the position of the alkyl side chain of 4-t-OP.