Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback ...Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.展开更多
A new beam broadening synthesis technique for Synthetic Aperture Radar(SAR) antenna array, namely Projection Matrix Algorithm(PMA) is presented. The theory of PMA is introduced firstly, and then the iterative renewed ...A new beam broadening synthesis technique for Synthetic Aperture Radar(SAR) antenna array, namely Projection Matrix Algorithm(PMA) is presented. The theory of PMA is introduced firstly, and then the iterative renewed manner is improved to resolve the unbalance problem under amplitude and phase control. In order to validate the algorithm correct and effective, an actual engineering application example is investigated. The beam synthesis results of 1.0~4.5 times broadening under the phase only control and the amplitude and phase control using improved PMA are given. The results show that the beam directivity, the beam broadening, and the side-lobe level requirements were met. It is demonstrated that the improved PMA was effective and feasible for SAR application.展开更多
The beam deflectors based on electro-optic phased array(EOPA) is mainly described, and then an analysis on existing control schemes for driving the EOPA beam deflectors, based on custom hard-wired electronics or bas...The beam deflectors based on electro-optic phased array(EOPA) is mainly described, and then an analysis on existing control schemes for driving the EOPA beam deflectors, based on custom hard-wired electronics or based on software in a microcontroUer, is made. Compared with these, a driving and control system for a multi-channel EOPA beam deflector is presented, in which the control assignment is implemented with a field programmable gate array(FPGA) chip. For different performance requirements, two control schemes, one with the serial scheme and another with the parallel scheme, have been explored and rapidly prototyped in Xilinx FPGA chips. With the control structures for the EOPA beam deflector, scanning rates of 588 kHz and 5 MHz can be respectivelv reached.展开更多
A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointin...A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.展开更多
We experimentally demonstrated a cascaded internal phase control technique.A laser array with 12 channels was divided into three sub-arrays and a stage array,and phases of the sub-arrays and the stage array were locke...We experimentally demonstrated a cascaded internal phase control technique.A laser array with 12 channels was divided into three sub-arrays and a stage array,and phases of the sub-arrays and the stage array were locked by four phase controllers based on the stochastic parallel gradient descent(SPGD)algorithm,respectively.In this way,the phases of the whole array were locked,and the visibility of the interference pattern of the whole emitted laser array in the far field was∼93%.In addition,the technique has the advantage of element expanding and can be further used in the high-power coherent beam combination(CBC)system due to its compact spatial structure.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha(Grant No.KQ2305025)。
文摘Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.
文摘A new beam broadening synthesis technique for Synthetic Aperture Radar(SAR) antenna array, namely Projection Matrix Algorithm(PMA) is presented. The theory of PMA is introduced firstly, and then the iterative renewed manner is improved to resolve the unbalance problem under amplitude and phase control. In order to validate the algorithm correct and effective, an actual engineering application example is investigated. The beam synthesis results of 1.0~4.5 times broadening under the phase only control and the amplitude and phase control using improved PMA are given. The results show that the beam directivity, the beam broadening, and the side-lobe level requirements were met. It is demonstrated that the improved PMA was effective and feasible for SAR application.
基金National Natural Science Foundation of China(60477042)
文摘The beam deflectors based on electro-optic phased array(EOPA) is mainly described, and then an analysis on existing control schemes for driving the EOPA beam deflectors, based on custom hard-wired electronics or based on software in a microcontroUer, is made. Compared with these, a driving and control system for a multi-channel EOPA beam deflector is presented, in which the control assignment is implemented with a field programmable gate array(FPGA) chip. For different performance requirements, two control schemes, one with the serial scheme and another with the parallel scheme, have been explored and rapidly prototyped in Xilinx FPGA chips. With the control structures for the EOPA beam deflector, scanning rates of 588 kHz and 5 MHz can be respectivelv reached.
文摘A phased array radar seeker(PARS) must be able to effectively decouple body motion and accurately extract the line-of-sight(LOS) rate for target missile tracking.In this study,the realtime two-channel beam pointing error(BPE) compensation method of PARS for LOS rate extraction is designed.The PARS discrete beam motion principium is analyzed,and the mathematical model of beam scanning control is finished.According to the principle of the antenna element shift phase,both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed,and the effect of BPE caused by phantom-bit technology(PBT) on the extraction accuracy of the LOS rate is examined.A compensation method is given,which includes coordinate transforms,beam angle margin compensation,and detector dislocation angle calculation.When the method is used,the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle.The simulation results validate the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.62275272 and 62075242)the Natural Science Foundation of Hunan Province,China(No.2019JJ10005)+1 种基金the Training Program for Excellent Young Innovators of Changsha(No.kq2206003)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.QL20220013).
文摘We experimentally demonstrated a cascaded internal phase control technique.A laser array with 12 channels was divided into three sub-arrays and a stage array,and phases of the sub-arrays and the stage array were locked by four phase controllers based on the stochastic parallel gradient descent(SPGD)algorithm,respectively.In this way,the phases of the whole array were locked,and the visibility of the interference pattern of the whole emitted laser array in the far field was∼93%.In addition,the technique has the advantage of element expanding and can be further used in the high-power coherent beam combination(CBC)system due to its compact spatial structure.