The use of open-type check dams in mountainous areas has become common practice in order to mitigate the effects of debris flow and extend the service life of engineering structures.The beam dam,a common debris flow c...The use of open-type check dams in mountainous areas has become common practice in order to mitigate the effects of debris flow and extend the service life of engineering structures.The beam dam,a common debris flow control system,has received less attention in research on the impact process of debris flow and check dams compared to solid check dams.Additionally,the estimation of impact pressure in debris flow primarily considers debris flow characteristics,without taking into account the influence of geometric characteristics of the transmission structure.To better understand the impact process of debris flow on beam dams,a series of small-scale debris flow impact tests were conducted in a model flume.Key parameters,including velocity,depth,and impact pressure,were measured.The results show that the maximum impact pressure of debris flow is affected by both the characteristics of the debris flow and the relative opening size of the beam dam.Due to flow and edge occlusion in the middle of the beam dam,the discharge of debris flow is enhanced,resulting in a longer impact process and higher maximum impact pressure.Based on these findings,a calculation model of the maximum impact pressure of debris flow at the midpoint of the middle beam is proposed,which can be used to estimate the impact of debris flow on the discharge part of the beam dam.展开更多
Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of...Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli imitator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 x 10~8 to 4.9× 10~5 at the dosage of 5.2×1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.展开更多
Beam dams are a highly effective and commonly used open-type check dam in debris-flow hazard mitigation. In this study, dimensional analysis was used to obtain empirical equations for quantitatively determining the se...Beam dams are a highly effective and commonly used open-type check dam in debris-flow hazard mitigation. In this study, dimensional analysis was used to obtain empirical equations for quantitatively determining the sediment-trapping and flow-regulating characteristics of a beam dam. To determine the coefficients of the empirical equations, flume experiments were conducted to simulate the trapping and regulating processes. The flow pattern, trapping, and regulating characteristics were investigated when debris flows passed through a beam dam. Debris-flow bulk density and peak discharge, and sediment-trapping ratios, were measured directly and indirectly. The results showed that three blocking actions occurred, and that blockage-breaking considerably influenced the trapping and regulating performance of the beam dam. The relative opening size and the sediment concentration were the two main factors affecting the performance of the beam dam. The ratio of trapping sediment decreased with relative opening, and increased with sediment concentration as well as reducing ratio of bulk density and reducing ratio of peak discharge. The sediment concentration and relative opening were the leading factors influencing the trapping and regulating sediment of a beam dam, followed by flume gradient. The results showed that the calculated values obtained using empirical equations were in good agreement with the values derived from the experiments, and that the deviation was acceptable. Finally, taking Zechawa Gully as an example, using the empirical equations we designed the opening size of a beam dam aimed to trap sediment and regulate peak discharge of debris flow in the main gully.展开更多
基金jointly funded by the National Natural Science Foundation of China(Grant No.42201095)the Natural Science Foundation of Sichuan(Grant No.2022NSFSC1032)。
文摘The use of open-type check dams in mountainous areas has become common practice in order to mitigate the effects of debris flow and extend the service life of engineering structures.The beam dam,a common debris flow control system,has received less attention in research on the impact process of debris flow and check dams compared to solid check dams.Additionally,the estimation of impact pressure in debris flow primarily considers debris flow characteristics,without taking into account the influence of geometric characteristics of the transmission structure.To better understand the impact process of debris flow on beam dams,a series of small-scale debris flow impact tests were conducted in a model flume.Key parameters,including velocity,depth,and impact pressure,were measured.The results show that the maximum impact pressure of debris flow is affected by both the characteristics of the debris flow and the relative opening size of the beam dam.Due to flow and edge occlusion in the middle of the beam dam,the discharge of debris flow is enhanced,resulting in a longer impact process and higher maximum impact pressure.Based on these findings,a calculation model of the maximum impact pressure of debris flow at the midpoint of the middle beam is proposed,which can be used to estimate the impact of debris flow on the discharge part of the beam dam.
基金The project supported by the National Nature Science Foundation of China (No. 19890300)
文摘Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli imitator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 x 10~8 to 4.9× 10~5 at the dosage of 5.2×1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.
基金supported by the Chinese Academy of Sciences and Organization Department of Sichuan Provincial Party Committee“Light of West China”Program(the key control techniques of glacial debris flow along the Sichuan-Tibet Railway)the National Natural Science Foundation of China(Grant No.41772343)STS Project of the Chinese Academy of Sciences(KFJ-STS-ZDTP015)
文摘Beam dams are a highly effective and commonly used open-type check dam in debris-flow hazard mitigation. In this study, dimensional analysis was used to obtain empirical equations for quantitatively determining the sediment-trapping and flow-regulating characteristics of a beam dam. To determine the coefficients of the empirical equations, flume experiments were conducted to simulate the trapping and regulating processes. The flow pattern, trapping, and regulating characteristics were investigated when debris flows passed through a beam dam. Debris-flow bulk density and peak discharge, and sediment-trapping ratios, were measured directly and indirectly. The results showed that three blocking actions occurred, and that blockage-breaking considerably influenced the trapping and regulating performance of the beam dam. The relative opening size and the sediment concentration were the two main factors affecting the performance of the beam dam. The ratio of trapping sediment decreased with relative opening, and increased with sediment concentration as well as reducing ratio of bulk density and reducing ratio of peak discharge. The sediment concentration and relative opening were the leading factors influencing the trapping and regulating sediment of a beam dam, followed by flume gradient. The results showed that the calculated values obtained using empirical equations were in good agreement with the values derived from the experiments, and that the deviation was acceptable. Finally, taking Zechawa Gully as an example, using the empirical equations we designed the opening size of a beam dam aimed to trap sediment and regulate peak discharge of debris flow in the main gully.