In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
An electron beam probe(EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam wi...An electron beam probe(EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction.This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment.In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution,Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System(CADS) and High Intensity Heavy Ion Accelerator Facility(HIAF) are given. Finally, a potential system design for an EBP is described.展开更多
Neutral beam injection is recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector(4–8 MW, 10–100 s) were b...Neutral beam injection is recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector(4–8 MW, 10–100 s) were built and operated in 2014. Neutralization efficiency is one of the important parameters for neutral beam. High neutralization efficiency can not only improve injection power at the same beam energy, but also decrease the power deposited on the heat-load components in the neutral beam injector(NBI). This research explores the power deposition distribution at different neutralization efficiencies on the beamline components of the NBI device. This work has great significance for guiding the operation of EAST-NBI, especially in long pulse and high power operation, which can reduce the risk of thermal damage of the beamline components and extend the working life of the NBI device.展开更多
We consider the problem of inducing withdrawal reflex on a test subject by exposing the subject’s skin to an electromagnetic beam. Heat-sensitive nociceptors in the skin are activated wherever the temperature is abov...We consider the problem of inducing withdrawal reflex on a test subject by exposing the subject’s skin to an electromagnetic beam. Heat-sensitive nociceptors in the skin are activated wherever the temperature is above the activation temperature. Withdrawal reflex occurs when the activated volume reaches a threshold. We non-dimensionalize the problem to write the temperature as the product of a parameter-free function of non-dimensional variables and a function of beam parameters. This formulation allows studying beam parameters without knowing skin material parameters. We examine the effects of spot size, total power and distribution type of the electromagnetic beam on 3 quantities at reflex: 1) the time to reflex, 2) the maximum temperature increase, and 3) the total energy consumption. We find that the flat-top beam is the best, with the lowest energy consumption and the smallest maximum temperature increase. The Super-Gaussian beam is only slightly inferior to the flat-top. The Gaussian beam has by far the worst performance among these three.展开更多
A rubidium-beam microwave clock, optically pumped by a distributed feedback diode laser, is experimentally investigated. The clock is composed of a physical package, optical systems, and electric servo loops. The phys...A rubidium-beam microwave clock, optically pumped by a distributed feedback diode laser, is experimentally investigated. The clock is composed of a physical package, optical systems, and electric servo loops. The physical package realizes the microwave interrogation of a rubidium-atomic beam. The optical systems, equipped with two 780-nm distributed feedback laser diodes, yield light for pumping and detecting. The servo loops control the frequency of a local oscillator with respect to the microwave spectrum. With the experimental systems, the microwave spectrum, which has an amplitude of 4 n A and a line width of 700 Hz, is obtained. Preliminary tests show that the clock short-term frequency stability is 7 × 10^-11 at 1 s, and 3 × 10^-12 at 1000 s. These experimental results demonstrate the feasibility of the scheme for a manufactured clock.展开更多
The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were...The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were acquired using the brillouin optical time-domain reflectometer through the loading experiments of the composite beam structure. In addition, a finite element model of the composite beam structure was developed to analyze the mechanical responses of the epoxy asphalt mixture using the extended finite element method. The experimental results show that the development of crack propagation becomes instable with the increase of the load, and larger loads will generate deeper cracks. Moreover, the numerical results show that the mechanical response of the crack tip changes with the crack propagation, and the worst areas that subjected to crack damage are located on both sides of the composite beam structure.展开更多
Based on the properties of wideband source’s spatial spread,an algorithm for reverberation suppression in beams domain is proposed.In an effective observation range,a compact bank of receiving spatial beams is operat...Based on the properties of wideband source’s spatial spread,an algorithm for reverberation suppression in beams domain is proposed.In an effective observation range,a compact bank of receiving spatial beams is operated to transform the data from element domain to beam domain.Angular Distribution Index(ADI) is obtained by comparing to a reference value which is computed by Monte Carlo Integration.ADI decreases with a stronger target echo.Hence,choosing an appropriate threshold of ADI,the target echo can be separated from reverberation by cutting off the high AD components.The filter is compatible with the procedures of beamforming and detection for the current sonar.The computation complexity of the filter is low.The relationships between ADI and frequency,bandwidth,signal-reverberation ratio,are illustrated by a simulation example.The processing results based on the lake-trial and sea-trial data show that reverberation can be significantly suppressed,and threshold choosing for wideband ADI filter is fault tolerant.展开更多
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe...In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.展开更多
In conventional research on beam gas coulomb scattering (BGCS), only the related beam lifetime using the analytical method is studied. In this paper, using the particle-in-cell Monte Carlo collisions (PIC-MCC) met...In conventional research on beam gas coulomb scattering (BGCS), only the related beam lifetime using the analytical method is studied. In this paper, using the particle-in-cell Monte Carlo collisions (PIC-MCC) method, we not only simulated the beam lifetime but also explored the effect of BGCS on the beam distribution. In order to better estimate the effect on particle distribution, we study the ultra-low emittance electron beam. Here we choose the HeFei Advanced Light Source. By counting the lost particles in a certain time, the corresponding beam lifetime we simulated is 4.8482 h/13.8492 h in x/y, which is very close to the theoretic value (5.0555 h/13.7024 h in x/y). By counting the lost particles relative to the collided particles, the simulated value of the loss probability of collided particles is 1.3431e-04, which is also very close to the theoretical value (1.3824e-04). Besides, the simulation shows there is a tail in the transverse distribution due to the BGCS. The close match of the simulation with the theoretic value in beam lifetime and loss probability indicates our simulation is reliable.展开更多
It has been reported that transverse distribution shaping can help to further enhance the energy extraction efficiency in a terawatt, tapered X-ray free-electron laser. Thus, methods of creating and keeping an almost ...It has been reported that transverse distribution shaping can help to further enhance the energy extraction efficiency in a terawatt, tapered X-ray free-electron laser. Thus, methods of creating and keeping an almost uniform transverse distributed(UTD) beam within undulators are required. This study shows that a UTD electron beam can be generated within evenly distributed drift sections where undulators can be placed, by means of octupoles and particular optics. A specific design is presented, and numerical simulations are performed to verify the proposed method.展开更多
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
文摘An electron beam probe(EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction.This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment.In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution,Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System(CADS) and High Intensity Heavy Ion Accelerator Facility(HIAF) are given. Finally, a potential system design for an EBP is described.
基金supported by the International Science and Technology Cooperation Program of China(No.2014DFG61950)National Natural Science Foundation of China(No.11405207)the Foundation of ASIPP(No.DSJJ-15-GC03)
文摘Neutral beam injection is recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector(4–8 MW, 10–100 s) were built and operated in 2014. Neutralization efficiency is one of the important parameters for neutral beam. High neutralization efficiency can not only improve injection power at the same beam energy, but also decrease the power deposited on the heat-load components in the neutral beam injector(NBI). This research explores the power deposition distribution at different neutralization efficiencies on the beamline components of the NBI device. This work has great significance for guiding the operation of EAST-NBI, especially in long pulse and high power operation, which can reduce the risk of thermal damage of the beamline components and extend the working life of the NBI device.
文摘We consider the problem of inducing withdrawal reflex on a test subject by exposing the subject’s skin to an electromagnetic beam. Heat-sensitive nociceptors in the skin are activated wherever the temperature is above the activation temperature. Withdrawal reflex occurs when the activated volume reaches a threshold. We non-dimensionalize the problem to write the temperature as the product of a parameter-free function of non-dimensional variables and a function of beam parameters. This formulation allows studying beam parameters without knowing skin material parameters. We examine the effects of spot size, total power and distribution type of the electromagnetic beam on 3 quantities at reflex: 1) the time to reflex, 2) the maximum temperature increase, and 3) the total energy consumption. We find that the flat-top beam is the best, with the lowest energy consumption and the smallest maximum temperature increase. The Super-Gaussian beam is only slightly inferior to the flat-top. The Gaussian beam has by far the worst performance among these three.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174015)
文摘A rubidium-beam microwave clock, optically pumped by a distributed feedback diode laser, is experimentally investigated. The clock is composed of a physical package, optical systems, and electric servo loops. The physical package realizes the microwave interrogation of a rubidium-atomic beam. The optical systems, equipped with two 780-nm distributed feedback laser diodes, yield light for pumping and detecting. The servo loops control the frequency of a local oscillator with respect to the microwave spectrum. With the experimental systems, the microwave spectrum, which has an amplitude of 4 n A and a line width of 700 Hz, is obtained. Preliminary tests show that the clock short-term frequency stability is 7 × 10^-11 at 1 s, and 3 × 10^-12 at 1000 s. These experimental results demonstrate the feasibility of the scheme for a manufactured clock.
基金Funded by the National Natural Science Foundation of China(No.51178114)the Fundamental Research Funds for the Central Universities(No.CXLX12_0117)the Scientifi c Research Foundation of Graduate School of Southeast University(No.YBJJ1318)
文摘The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were acquired using the brillouin optical time-domain reflectometer through the loading experiments of the composite beam structure. In addition, a finite element model of the composite beam structure was developed to analyze the mechanical responses of the epoxy asphalt mixture using the extended finite element method. The experimental results show that the development of crack propagation becomes instable with the increase of the load, and larger loads will generate deeper cracks. Moreover, the numerical results show that the mechanical response of the crack tip changes with the crack propagation, and the worst areas that subjected to crack damage are located on both sides of the composite beam structure.
基金supported by the National Natural Science Foundation of China(61302169)
文摘Based on the properties of wideband source’s spatial spread,an algorithm for reverberation suppression in beams domain is proposed.In an effective observation range,a compact bank of receiving spatial beams is operated to transform the data from element domain to beam domain.Angular Distribution Index(ADI) is obtained by comparing to a reference value which is computed by Monte Carlo Integration.ADI decreases with a stronger target echo.Hence,choosing an appropriate threshold of ADI,the target echo can be separated from reverberation by cutting off the high AD components.The filter is compatible with the procedures of beamforming and detection for the current sonar.The computation complexity of the filter is low.The relationships between ADI and frequency,bandwidth,signal-reverberation ratio,are illustrated by a simulation example.The processing results based on the lake-trial and sea-trial data show that reverberation can be significantly suppressed,and threshold choosing for wideband ADI filter is fault tolerant.
文摘In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.
基金Supported by Natural Science Foundation of China(11175182,11175180)
文摘In conventional research on beam gas coulomb scattering (BGCS), only the related beam lifetime using the analytical method is studied. In this paper, using the particle-in-cell Monte Carlo collisions (PIC-MCC) method, we not only simulated the beam lifetime but also explored the effect of BGCS on the beam distribution. In order to better estimate the effect on particle distribution, we study the ultra-low emittance electron beam. Here we choose the HeFei Advanced Light Source. By counting the lost particles in a certain time, the corresponding beam lifetime we simulated is 4.8482 h/13.8492 h in x/y, which is very close to the theoretic value (5.0555 h/13.7024 h in x/y). By counting the lost particles relative to the collided particles, the simulated value of the loss probability of collided particles is 1.3431e-04, which is also very close to the theoretical value (1.3824e-04). Besides, the simulation shows there is a tail in the transverse distribution due to the BGCS. The close match of the simulation with the theoretic value in beam lifetime and loss probability indicates our simulation is reliable.
基金Supported by National Natural Science Foundation of China(11475202,11405187)Youth Innovation Promotion Association of Chinese Academy of Sciences(2015009)
文摘It has been reported that transverse distribution shaping can help to further enhance the energy extraction efficiency in a terawatt, tapered X-ray free-electron laser. Thus, methods of creating and keeping an almost uniform transverse distributed(UTD) beam within undulators are required. This study shows that a UTD electron beam can be generated within evenly distributed drift sections where undulators can be placed, by means of octupoles and particular optics. A specific design is presented, and numerical simulations are performed to verify the proposed method.