To analyze the stability problem of spatial beam structure more accurately, a spatial cubic spline geometric nonlinear beam dement was proposed considering the seeond-order effect. The deformation field was built with...To analyze the stability problem of spatial beam structure more accurately, a spatial cubic spline geometric nonlinear beam dement was proposed considering the seeond-order effect. The deformation field was built with cubic spline function, and its curvature degree of freedom (DOF) was eliminated by static condensation method. Then we got the geometric nonlinear stiffness matrix of the new spatial two.node Euler-Bernouili beam dement. Several examples proved calculation accuracy of the critical load by meshing a bar to one element using the method of this paper was equivalent to mesh a bar to 3 or 4 traditional nonlinear beam dements.展开更多
Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the...Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the curved beam.Based on exact nonlinear strain-displacement relation,virtual work principle is used to derive dynamic equations for a rotating curved beam,with the effects of axial extensibility,shear deformation and rotary inertia taken into account.The constant matrices are solved numerically utilizing the Gauss quadrature integration method.Newmark and Newton-Raphson iteration methods are adopted to solve the differential equations of the rigid-flexible coupling system.The present results are compared with those obtained by commercial programs to validate the present finite method.In order to further illustrate the convergence and efficiency characteristics of the present modeling and computation formulation,comparison of the results of the present formulation with those of the ADAMS software are made.Furthermore,the present results obtained from linear formulation are compared with those from nonlinear formulation,and the special dynamic characteristics of the curved beam are concluded by comparison with those of the straight beam.展开更多
A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. ...In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.展开更多
The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were der...The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.展开更多
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an inter...Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.展开更多
A tensor-based updated Lagrangian (UL) formulation for the geometrically nonlinear analysis of 2D beam-column structures is developed by using curvilinear coordinates, which has considered the effects of the deforme...A tensor-based updated Lagrangian (UL) formulation for the geometrically nonlinear analysis of 2D beam-column structures is developed by using curvilinear coordinates, which has considered the effects of the deformed curvature. Between the known configuration C1 and the desired configuration C2, a configuration C2^* derived by rigid-body motion of C1 is introduced to eliminate the element-end transverse displacements between C2^* and C2. A stiffness matrix is obtained in C2^*; and then by a transformation defined by the element-end displacements, the stiffness matrix in C2^* is transformed into that in CI. Comparing the stiffness matrix with that in the conventional UL formulation for a 2D beam element, the initial displacement stiffness matrix emerges, which results from the deformed curvature within the element. Numerical examples have verified the accuracy and efficiency of the present formulation, and the results show that the deformed curvatures have significant effects when deformations are large.展开更多
The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the no...The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the non-linear analysis and the static condensation. Based on the interpolation theory, the displacement fields of the three-node non-uniform Euler-Bernoulli beam element were constructed at first: the quintic Hermite interpolation polynomial was used for the lateral displacement field and the quadratic Lagrange interpolation polynomial for the axial displacement field. Then,based on the basic assumptions of non-uniform Euler-Bernoulli beam whose section properties were continuously varying along its centroidal axis, the linear and geometric stiffness matrices of the three-node non-uniform beam element were derived according to the nonlinear finite element theory. Finally,the degrees of freedom ( DOFs) of the middle node of the element were eliminated using the static condensation method, and a new two-node non-uniform beam element including axial-force effect was obtained. The results indicate that each bar needs to be meshed with only one element could get a fairly accurate solution when it is applied to the stability analyses.展开更多
Truck frames should be designed and fabricated with enough rigidity to avoid excessive deflections. Finite element analysis (FEA) plays an important role in all stages of frame designs. While being accurate, 3D solid ...Truck frames should be designed and fabricated with enough rigidity to avoid excessive deflections. Finite element analysis (FEA) plays an important role in all stages of frame designs. While being accurate, 3D solid element FEA models are built upon frame configuration details which are not feasible in the preliminary design stage, partially because of limited available design data of frames and heavy computation costs. This research develops 1D beam element FEA models for simulating frame structures. In this paper, the CAD model of a truck frame is first created. The solid element FEA analysis, which is adopted as the baseline in this study, is subsequently conducted for the stiffness of the frame, Next, beam element FEA analysis is performed for validating the feasibility of the beam element FEA model by comparing the results from the solid and beam element FEA models. It is found that the beam element FEA model can predict the frame stiffness with acceptable accuracy and reduce the computation cost significantly.展开更多
The quasi-conforming element of the curved beam and shallow curved beam is given in this paper. Numerical examples illustrate that the quasi-conforming elements of the curved beam and shallow curved beam which is used...The quasi-conforming element of the curved beam and shallow curved beam is given in this paper. Numerical examples illustrate that the quasi-conforming elements of the curved beam and shallow curved beam which is used to approximate the curved beam have better accuracy than the straight beam clement. The curved beam element constructed by displacement method can not satisfy rigid body motion condition and the very fine grids have to be used in order to satisfy rigid body motion condition approxtmately.In this paper it is proved that the straight beam element and the quasi-conforming element of the curved beam and shallow curved beam, when element size is reduced infinitely, have convergence rate with the same order O(l2) and when regular elements are used. I is the element length.展开更多
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforce...To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.展开更多
Analysis of slender beam structures in a three-dimensional space is widely applicable in mechanical and civil engineering. This paper presents a new procedure to determine the reference coordinate system of a beam ele...Analysis of slender beam structures in a three-dimensional space is widely applicable in mechanical and civil engineering. This paper presents a new procedure to determine the reference coordinate system of a beam element under large rotation and elastic deformation based on a newly introduced physical concept: the zero twist sectional condition, which means that a non-twisted section between two nodes always exists and this section can reasonably be regarded as a reference coordinate system to calculate the internal element forces. This method can avoid the disagreement of the reference coordinates which might occur under large spatial rotations and deformations. Numerical examples given in the paper prove that this procedure guarantees the numerical exactness of the inherent formulation and improves the numerical efficiency, especially under large spatial rotations.展开更多
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul...Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.展开更多
Slip of a composite box beam may reduce its stiffness, enlarge its deformation and affect its performance. In this work, the governing differential equations and boundary conditions of composite box beams were establi...Slip of a composite box beam may reduce its stiffness, enlarge its deformation and affect its performance. In this work, the governing differential equations and boundary conditions of composite box beams were established. Analytic solutions of combined differential equations were also established. Partial degree of freedom was adopted to establish a new FEA element of three-dimensional beam, taking into account the slip effect. Slip and its first-order derivative were introduced into the nodes of composite box beams as generalized degree of freedom. Stiffness matrix and load array of beam elements were established. A three-dimensional nonlinear calculation program was worked out. The results show that the element is reliable and easy to divide and is suitable for special nonlinear analysis of large-span composite box beams.展开更多
Fluid-structure interaction(FSI)problems in microchannels play prominent roles in many engineering applications.The present study is an effort towards the simulation of flow in microchannel considering FSI.Top boundar...Fluid-structure interaction(FSI)problems in microchannels play prominent roles in many engineering applications.The present study is an effort towards the simulation of flow in microchannel considering FSI.Top boundary of the microchannel is assumed to be rigid and the bottom boundary,which is modeled as a Bernoulli-Euler beam,is simulated by size-dependent beam elements for finite element method(FEM)based on a modified couple stress theory.The lattice Boltzmann method(LBM)using D2Q13 LB model is coupled to the FEM in order to solve fluid part of FSI problem.In the present study,the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement.The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.展开更多
Element stiffness equation is very important in structural analysis, and directly influences the accuracy of the results. At present, derivation method of element stiffness equation is relatively mature under ambient ...Element stiffness equation is very important in structural analysis, and directly influences the accuracy of the results. At present, derivation method of element stiffness equation is relatively mature under ambient temperature, and the elastic phrase of material stress-strain curve is generally adopted as physical equation in derivation. However, the material stress-strain relationship is very complicated at elevated temperature, and its form is not unique, which brings great difficulty to the derivation of element stiffness equation. Referring to the derivation method of element stiffness equation at ambient temperature, by using the continuous function of stress-strain-temperature at elevated temperature, and based on the principle of virtual work, the stiffness equation of space beam element and the formulas of stiffness matrix are derived in this paper, which provide basis for finite element analysis on structures at elevated temperature.展开更多
Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained result...Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.展开更多
The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a ...The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.展开更多
<span style="font-family:Verdana;">Beam equation can describe the deformation of beams and reflect various bending problems and it has been widely used in large engineering projects, bridge constructio...<span style="font-family:Verdana;">Beam equation can describe the deformation of beams and reflect various bending problems and it has been widely used in large engineering projects, bridge construction, aerospace and other fields. It has important engineering practice value and scientific significance for the design of numerical schemes. In this paper, a scheme for vibration equation of viscoelastic beam is developed by using the Hermite finite element. Based on an elliptic projection, the errors of semi-discrete scheme and fully discrete scheme are analyzed respectively, and the optimal </span><i><span style="font-family:Verdana;">L</span></i><sup><span style="font-family:Verdana;vertical-align:super;">2</span></sup><span style="font-family:Verdana;">-norm error estimates are obtained. Finally, a numerical example is given to verify the theoretical predictions and the validity of the scheme.展开更多
文摘To analyze the stability problem of spatial beam structure more accurately, a spatial cubic spline geometric nonlinear beam dement was proposed considering the seeond-order effect. The deformation field was built with cubic spline function, and its curvature degree of freedom (DOF) was eliminated by static condensation method. Then we got the geometric nonlinear stiffness matrix of the new spatial two.node Euler-Bernouili beam dement. Several examples proved calculation accuracy of the critical load by meshing a bar to one element using the method of this paper was equivalent to mesh a bar to 3 or 4 traditional nonlinear beam dements.
基金supported by the National Natural Science Foundation of China(10872126)Research Fund for the Doctoral Program of Higher Education of China(20100073110007)
文摘Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the curved beam.Based on exact nonlinear strain-displacement relation,virtual work principle is used to derive dynamic equations for a rotating curved beam,with the effects of axial extensibility,shear deformation and rotary inertia taken into account.The constant matrices are solved numerically utilizing the Gauss quadrature integration method.Newmark and Newton-Raphson iteration methods are adopted to solve the differential equations of the rigid-flexible coupling system.The present results are compared with those obtained by commercial programs to validate the present finite method.In order to further illustrate the convergence and efficiency characteristics of the present modeling and computation formulation,comparison of the results of the present formulation with those of the ADAMS software are made.Furthermore,the present results obtained from linear formulation are compared with those from nonlinear formulation,and the special dynamic characteristics of the curved beam are concluded by comparison with those of the straight beam.
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
文摘In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.
文摘The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.
基金supported by the National Natural Science Foundation of China (50725826)Specific Research on Cable-reinforced Membranes with Super Span and Complex Single-shell Structures of Expo Axis (08dz0580303)Shanghai Postdoctoral Fund (10R21416200)
文摘Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.
文摘A tensor-based updated Lagrangian (UL) formulation for the geometrically nonlinear analysis of 2D beam-column structures is developed by using curvilinear coordinates, which has considered the effects of the deformed curvature. Between the known configuration C1 and the desired configuration C2, a configuration C2^* derived by rigid-body motion of C1 is introduced to eliminate the element-end transverse displacements between C2^* and C2. A stiffness matrix is obtained in C2^*; and then by a transformation defined by the element-end displacements, the stiffness matrix in C2^* is transformed into that in CI. Comparing the stiffness matrix with that in the conventional UL formulation for a 2D beam element, the initial displacement stiffness matrix emerges, which results from the deformed curvature within the element. Numerical examples have verified the accuracy and efficiency of the present formulation, and the results show that the deformed curvatures have significant effects when deformations are large.
文摘The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the non-linear analysis and the static condensation. Based on the interpolation theory, the displacement fields of the three-node non-uniform Euler-Bernoulli beam element were constructed at first: the quintic Hermite interpolation polynomial was used for the lateral displacement field and the quadratic Lagrange interpolation polynomial for the axial displacement field. Then,based on the basic assumptions of non-uniform Euler-Bernoulli beam whose section properties were continuously varying along its centroidal axis, the linear and geometric stiffness matrices of the three-node non-uniform beam element were derived according to the nonlinear finite element theory. Finally,the degrees of freedom ( DOFs) of the middle node of the element were eliminated using the static condensation method, and a new two-node non-uniform beam element including axial-force effect was obtained. The results indicate that each bar needs to be meshed with only one element could get a fairly accurate solution when it is applied to the stability analyses.
文摘Truck frames should be designed and fabricated with enough rigidity to avoid excessive deflections. Finite element analysis (FEA) plays an important role in all stages of frame designs. While being accurate, 3D solid element FEA models are built upon frame configuration details which are not feasible in the preliminary design stage, partially because of limited available design data of frames and heavy computation costs. This research develops 1D beam element FEA models for simulating frame structures. In this paper, the CAD model of a truck frame is first created. The solid element FEA analysis, which is adopted as the baseline in this study, is subsequently conducted for the stiffness of the frame, Next, beam element FEA analysis is performed for validating the feasibility of the beam element FEA model by comparing the results from the solid and beam element FEA models. It is found that the beam element FEA model can predict the frame stiffness with acceptable accuracy and reduce the computation cost significantly.
基金The Project Supported by National Natural Science Foundation of China
文摘The quasi-conforming element of the curved beam and shallow curved beam is given in this paper. Numerical examples illustrate that the quasi-conforming elements of the curved beam and shallow curved beam which is used to approximate the curved beam have better accuracy than the straight beam clement. The curved beam element constructed by displacement method can not satisfy rigid body motion condition and the very fine grids have to be used in order to satisfy rigid body motion condition approxtmately.In this paper it is proved that the straight beam element and the quasi-conforming element of the curved beam and shallow curved beam, when element size is reduced infinitely, have convergence rate with the same order O(l2) and when regular elements are used. I is the element length.
基金the National Natural Science Foundation of China under Grant Nos.51278218 and 51078166
文摘To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.
文摘Analysis of slender beam structures in a three-dimensional space is widely applicable in mechanical and civil engineering. This paper presents a new procedure to determine the reference coordinate system of a beam element under large rotation and elastic deformation based on a newly introduced physical concept: the zero twist sectional condition, which means that a non-twisted section between two nodes always exists and this section can reasonably be regarded as a reference coordinate system to calculate the internal element forces. This method can avoid the disagreement of the reference coordinates which might occur under large spatial rotations and deformations. Numerical examples given in the paper prove that this procedure guarantees the numerical exactness of the inherent formulation and improves the numerical efficiency, especially under large spatial rotations.
文摘Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.
基金Project(50708112) supported by the National Natural Science Foundation of ChinaProject(IRT1296) supported by the Program for Changjiang Scholars and Innovative Research Team in University
文摘Slip of a composite box beam may reduce its stiffness, enlarge its deformation and affect its performance. In this work, the governing differential equations and boundary conditions of composite box beams were established. Analytic solutions of combined differential equations were also established. Partial degree of freedom was adopted to establish a new FEA element of three-dimensional beam, taking into account the slip effect. Slip and its first-order derivative were introduced into the nodes of composite box beams as generalized degree of freedom. Stiffness matrix and load array of beam elements were established. A three-dimensional nonlinear calculation program was worked out. The results show that the element is reliable and easy to divide and is suitable for special nonlinear analysis of large-span composite box beams.
文摘Fluid-structure interaction(FSI)problems in microchannels play prominent roles in many engineering applications.The present study is an effort towards the simulation of flow in microchannel considering FSI.Top boundary of the microchannel is assumed to be rigid and the bottom boundary,which is modeled as a Bernoulli-Euler beam,is simulated by size-dependent beam elements for finite element method(FEM)based on a modified couple stress theory.The lattice Boltzmann method(LBM)using D2Q13 LB model is coupled to the FEM in order to solve fluid part of FSI problem.In the present study,the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement.The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.
基金the National Natural Science Foundation of China(No.50578093)
文摘Element stiffness equation is very important in structural analysis, and directly influences the accuracy of the results. At present, derivation method of element stiffness equation is relatively mature under ambient temperature, and the elastic phrase of material stress-strain curve is generally adopted as physical equation in derivation. However, the material stress-strain relationship is very complicated at elevated temperature, and its form is not unique, which brings great difficulty to the derivation of element stiffness equation. Referring to the derivation method of element stiffness equation at ambient temperature, by using the continuous function of stress-strain-temperature at elevated temperature, and based on the principle of virtual work, the stiffness equation of space beam element and the formulas of stiffness matrix are derived in this paper, which provide basis for finite element analysis on structures at elevated temperature.
文摘Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.
基金supported by the National Basic Research Program of China (Grant 2013CB733004)
文摘The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.
文摘<span style="font-family:Verdana;">Beam equation can describe the deformation of beams and reflect various bending problems and it has been widely used in large engineering projects, bridge construction, aerospace and other fields. It has important engineering practice value and scientific significance for the design of numerical schemes. In this paper, a scheme for vibration equation of viscoelastic beam is developed by using the Hermite finite element. Based on an elliptic projection, the errors of semi-discrete scheme and fully discrete scheme are analyzed respectively, and the optimal </span><i><span style="font-family:Verdana;">L</span></i><sup><span style="font-family:Verdana;vertical-align:super;">2</span></sup><span style="font-family:Verdana;">-norm error estimates are obtained. Finally, a numerical example is given to verify the theoretical predictions and the validity of the scheme.