Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an inter...Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.展开更多
The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation...The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.展开更多
The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exh...The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid" interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence of AI2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and AI2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cvcling.展开更多
Based on the basic operating principal and the technology characteristic of electron beam physical vapor deposition(EBPVD) technique, EBPVD was used to prepare the micro-layer composites. The effect on the substrate p...Based on the basic operating principal and the technology characteristic of electron beam physical vapor deposition(EBPVD) technique, EBPVD was used to prepare the micro-layer composites. The effect on the substrate preheating temperature was taken into accounts and the finite element analysis package ANSYS was used to simulate the internal stress field and the potential displacement changing tendency. The results show that one of the most important quality factors on the judgment of micro-layer composites is the adhesion between the substrate and the deposition layers as well as among the different deposition layers. Besides the existance of temperature gradient through the thickness of layers, the main reason for the internal stress in micro-layer composites is the mismatch of various properties of the layer and the substrate of different thermal expansions and crystal lattice types. With the increase of substrate preheating temperature, the inter-laminar shear stress also takes on a tendency of increase but the axial residual stress decrease.展开更多
Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is em...Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is employed to record pulses from the two grids of the ionization chamber. The electron-drift velocity is measured as a function of the reduced electric field E/p for eight different ratios of Ar+CH4 mixtures. By analyzing the experimental data of this study, self-consistency of experimental data is achieved, and formulae for calculating electron-drift velocity in any ratio of Ar+CH4 mixtures are obtained.展开更多
The microstructure and properties of stmulated heat affected zone (HAZ) of laser welded ULCB600 steel were investigate by applying the simulation technique with gleeble - 2000 dynamic thermal - me - chanical simulat...The microstructure and properties of stmulated heat affected zone (HAZ) of laser welded ULCB600 steel were investigate by applying the simulation technique with gleeble - 2000 dynamic thermal - me - chanical simulator.The influence of the preheat condition on the microstructure and properties of simu- lated HAZ of laser welded plate was also studied in order to evaluate the feasibility of reducing arisk that the ductility and toedness of HAZ may be poor by using preheat treatment.The results indicate that the grain size of laser - welded HAZ simulated is very small no matter if there is preheat, the toughness of simulated HAZ is therefore improved comparing to the base metal,and there is no obvious brittle - ductile transition in the range from - 80℃ to 20℃. The TEM analyses of sub -microstruc- ture also discover that microstructure constituent of both simulated HAZ is dominative lath martensite. However, the shaf of martensite is relatively coarse,and the dislocation density is relatively high for simulated HAZ with 200℃ preheat because of slower cooling rate. Combination of these tow factors is responsible for farer bardness and better toughness of simulated HAZ with preheat condition.展开更多
We study the relation between the magnetic field structure and the induced electric-current distribution based on a cylindrical model composed of a uniform electrically conductive medium. When the time-varying magneti...We study the relation between the magnetic field structure and the induced electric-current distribution based on a cylindrical model composed of a uniform electrically conductive medium. When the time-varying magnetic fields are axisymmetrically applied in the axial direction of the model, the electric fields are induced around the central axis in accordance with Faradays law. We examine the eddy-current distributions generated by loop-coils with various geometries carrying an alternating electric current. It is shown that the radial structure of the induced fields can significantly be controlled by the loop coil geometry, which will be suitable for practical use especially in magnetic nerve stimulation on bioelectromagneties, if we appropriately p/ace the exciting coil with optimum geometry.展开更多
Beam dynamics and rf designs of a 104 MHz ladder type IH-RFQ (L-IH-RFQ) accelerator are finished at Peking University for the acceleration of 14C+ from 40 keV to 500 keV. As a specific feature, the output beam ener...Beam dynamics and rf designs of a 104 MHz ladder type IH-RFQ (L-IH-RFQ) accelerator are finished at Peking University for the acceleration of 14C+ from 40 keV to 500 keV. As a specific feature, the output beam energy spread is as low as 0.6% achieved with the internal discrete bunching method, which makes potential applications of RFQ feasible, such as accelerator mass spectrometry and ion implantation. Tolerances of the beam dynamics design are studied by means of changing the input beam parameters, and the results are quite satisfying. On the other hand, the L-IH-RFQ structure is employed, taking advantage of its mechanical stability and the absence of inter-electrode voltage asymmetry. Radio-frequency properties are studied and optimized for reducing power loss with Microwave Studio (MWS). Tuning of the field flatness and frequency is investigated in principle.展开更多
The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported. We describe the experimen...The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported. We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.展开更多
A 30-MeV femto-second electron linac is built at the Shanghai Institute of Applied Physics, which can produce high power, coherent THz undulator radiation. We report the experimental facility and measurement of the po...A 30-MeV femto-second electron linac is built at the Shanghai Institute of Applied Physics, which can produce high power, coherent THz undulator radiation. We report the experimental facility and measurement of the power, frequency spectrum. First experiments show the averaged power at THz to be about 20mW.展开更多
Accelerator mass spectrometry (AMS) is one of the most promising methods to detect minute amounts of 182Hf. However, the sensitivity of 5×10^-11 for ^182Hf/180Hf obtained previously by the AMS method at China I...Accelerator mass spectrometry (AMS) is one of the most promising methods to detect minute amounts of 182Hf. However, the sensitivity of 5×10^-11 for ^182Hf/180Hf obtained previously by the AMS method at China Institute of Atomic Energy (CIAE) cannot meet the requirement of some applications. We present some new improvements of measurement method for AMS measurement of 182Hf at the CIAE HI?13 tandem accelerator system. As a result, a sensitivity of 1.0×10^-11 for 182Hf/180Hf is achieved.展开更多
Two dimensional particle-in-cell simulations are taken to study the interaction of a circularly polarized laser pulse with a nano-scale micro-structured target. The protons which are doped in the rear side of the targ...Two dimensional particle-in-cell simulations are taken to study the interaction of a circularly polarized laser pulse with a nano-scale micro-structured target. The protons which are doped in the rear side of the target experience the electrostatic fields caused by both the radiation pressure driven shock and the target normal sheath at the rear side of the target. A quasimonoenergetic proton bunch with central energy of about 11MeV and energy spread of ∆ ε/ε about 0.18 is achieved by using a 3.45×1019 W/cm2, 66fs laser pulse. A comparison with the case of linearly polarized laser pulse and the same target condition is considered.展开更多
For heating the tokamak plasma effectively, the ion source must be capable of producing ions with high proton ratio. The proton ratio, which is found to be more than 65.6% at the ion current of 19.6A with the extracti...For heating the tokamak plasma effectively, the ion source must be capable of producing ions with high proton ratio. The proton ratio, which is found to be more than 65.6% at the ion current of 19.6A with the extraction voltage of 39.6 k V, is measured with an image spectrograph by Doppler shift effect of Balmer-α-radiation spectrum emitted from fast hydrogen particles. The tendency of proton ratio with the ion density in experiment is almost the same as the mode devised by Zhang et al. Okumura et al. only gave the affection of the plasma volume and ion loss area on the proton ratio, but the relationship between the ion density in chamber and the proton ratio was not presented. We give the relationship.展开更多
An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang II laser facility. In the measurement, the self?emission spectrum, the backlighting spectrum, and the abso...An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang II laser facility. In the measurement, the self?emission spectrum, the backlighting spectrum, and the absorption spectrum were imaged with a flat filed grating and recorded on a gated micro channel plate detector to obtain the time-resolved transmission spectra in the range 10-20 ? (approximately 0.6-1.3 keV). Experimental results are compared with the calculation results of an unsolved transition array (UTA) code. The time-dependent relative shift in the positions of the 2p-3d transmission array is interpreted in terms of the plasma temperature variations.展开更多
Specific activity of primordial radionuclides and associated radiation hazards due to 40K, 226Ra, and 232Th have been measured in backed red brick samples, collected from five highly populated areas of the North West ...Specific activity of primordial radionuclides and associated radiation hazards due to 40K, 226Ra, and 232Th have been measured in backed red brick samples, collected from five highly populated areas of the North West Frontier Province of Pakistan. For the detection, analysis and data acquisition, a high purity germanium detector was used. Associated external doses were calculated using a Monte Carlo neutron photon transport code. A theoretical model to determine the gamma dose rate at 1 m height from the floor, made of bricks, was employed for the calculation of mass attenuation coefficient and self-absorption in the floor for the gamma energies of these radionuclides and their progeny. Monte Carlo simulation shows that in this study the floor, having more than an effective thickness of 15 cm, contributes very little to the external gamma dose rate. The values of the external dose rate and annual effective dose are found to be much lower than the world average as well as from other countries of the world.展开更多
β-NiAl is a potential oxidation-resistant coating material to be operated at temperatures above 1 150 ℃. In this paper,β-NiAl coatings with 0-0.5 at% Dy are prepared by electron beam physical vapor deposition (EB-...β-NiAl is a potential oxidation-resistant coating material to be operated at temperatures above 1 150 ℃. In this paper,β-NiAl coatings with 0-0.5 at% Dy are prepared by electron beam physical vapor deposition (EB-PVD). Transient oxidation behavior of the coatings is investigated. At 1 200 ℃, only stable α-Al2O3 phase is observed on the 0.05 at% doped coating, whereas the phase transfomlation from θ-Al2O3 to α-Al2O3 occurs in the 0.5 at% Dy doped coating during 1 h oxidation. At 1 100 ℃, all the coatings reveal the transient transformation of θ-α in the early 15 min and the transformation for the 0.05 at% Dy doped coating is completed within 45 min, much earlier than that for the 0.5 at% Dy doped coating. Overdoping of Dy retards the transformation of θ-α. The undoped and overdoped coatings reveal the whisker structure of θ-Al2O3 even after 20 h oxidation at 1 100 ℃, while the 0.05 at% Dy coating reveals typical granulated structure of α-Al2O3.展开更多
The effects of YO(1.5)doping in yttria-zirconia based thermal barrier coatings(TBCs)against CMAS interaction/infiltration are discussed.The TBCs with an YO(1.5)content ranging from 43–67 mol.%(balance Zr O2)were prod...The effects of YO(1.5)doping in yttria-zirconia based thermal barrier coatings(TBCs)against CMAS interaction/infiltration are discussed.The TBCs with an YO(1.5)content ranging from 43–67 mol.%(balance Zr O2)were produced by electron beam physical vapor deposition(EB-PVD)techniques.The results reveal a trend of higher apatite formation probability with the higher free YO(1.5)available in the yttriazirconia system.Additionally,the infiltration resistance and amount of consumed coating appears to be strongly dependent on the YO(1.5)content in the coating.The thinnest reaction layer and lowest infiltration was found for the highest produced 67 YO(1.5)coating.Complementary XRD experiments with volcanic ash/YO(1.5)powder mixtures with higher yttria contents than in the coatings(80 YO(1.5)and pure YO(1.5))also showed higher apatite formation with respect to increasing yttria content.The threshold composition to promote apatite-based reaction products was found to be around 50 YO(1.5)in zirconia which was proved in the coatings and XRD powder experiments.An YO(1.5)-ZrO2-Fe O-TiO2 bearing zirconolite-type phase was formed as a reaction product for all the coating compositions which implicates that TiO2 in the melt acts as a trigger for zirconolite formation.This phase could be detrimental for CMAS/volcanic ash infiltration resistance since it can be formed alongside with apatite which controls or limits the amount of Y^(3+)available for glass crystallization.The Fe rich garnet phase containing all the possible elements exhibited a slower nucleation compared to apatite and its growth was enhanced with slow cooling rates.The implications of phase stability and heat treatment effects on the reaction products are discussed for tests performed at 1250°C.展开更多
Thermal barrier coatings(TBCs) consisting ofLa_(2)Ce_(2)O_(7)(LCO) and Y_(2)O_(3)-stabilized-ZrO_(2)(YSZ) doubleceramic layer and Dy/Pt co-doped NiAl bond coat were produced by electron beam physical vapor deposition(...Thermal barrier coatings(TBCs) consisting ofLa_(2)Ce_(2)O_(7)(LCO) and Y_(2)O_(3)-stabilized-ZrO_(2)(YSZ) doubleceramic layer and Dy/Pt co-doped NiAl bond coat were produced by electron beam physical vapor deposition(EBPVD). Thermal cyclic performance of the TBCs was evaluated by flame shock testing at 1300 ℃. For comparison, the TBCs with a undoped NiAl bond coat were also studied. The microstructural evolution and failure mechanisms of the above TBCs during thermal cycling were investigated. Spallation failure of the TBCs with the undoped bond coat occurs after around 500 cycles by cracking at the interface between YSZ ceramic layer and thermally grown oxides(TGO) layer. The TBCs with Pt/Dy modified bond coat reveal improved interface bonding even after 1200 thermal cycles, whereas some delamination cracks are presented in the LCO layer. On the other hand,the Pt/Dy modified bond coat effectively suppresses the formation of the needle-like topologically closed packed phases(TCP) in the single crystal superalloy.展开更多
In this research, a nano-Mo2 C particle dispersion-strengthened copper alloy was prepared by a novel method, i.e., electron beam physical vapor deposition(EBPVD) which has advantages of simple technical process and ...In this research, a nano-Mo2 C particle dispersion-strengthened copper alloy was prepared by a novel method, i.e., electron beam physical vapor deposition(EBPVD) which has advantages of simple technical process and low cost compared with the conventional mechanical alloying method. And the microstructure and properties of the material were investigated. The results show that the copper matrix is composed of columnar crystals with the average width of 7 lm, and the size of Mo2 C dispersoid is1–7 nm. The ultimate tensile strength of the material is486 MPa, and the electrical conductivity is 82 % IACS. As the temperature increases from 293 to 573 K, the material becomes more brittle.展开更多
The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size ...The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size of characteristic microstructural elements (grains and subgrains). It was shown that refinement of foil microstructural elements to nanoscale is accompanied by their microhardness increase up to 4-5 GPa. The change of the thermal expansion coefficient (TEC) of the nanostructured (NS) foil of the Fe-35.1Ni alloy within the temperature range from -50 to 150 ℃ has some deviation from that observed for cast Invar alloy of the same composition. It has been found that the main factors affecting the peculiarities of thermal expansion of the NS foil can be related to the presence of small fraction of BCC- phase in them, high level of crystalline lattice microstrains and inhomogeneous magnetic order in FCC- phase. It was shown that as a result of additional thermal treatment of NS foils their invar properties become similar to that observed for cast Invar alloy but mechanical properties remain on the same level.展开更多
基金supported by the National Natural Science Foundation of China (50725826)Specific Research on Cable-reinforced Membranes with Super Span and Complex Single-shell Structures of Expo Axis (08dz0580303)Shanghai Postdoctoral Fund (10R21416200)
文摘Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.
基金Projects supported by The 2nd Stage of Brain Korea and Korea Research Foundation
文摘The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.
文摘The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid" interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence of AI2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and AI2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cvcling.
基金Project(50304007) supported by the National Natural Science Foundation of China
文摘Based on the basic operating principal and the technology characteristic of electron beam physical vapor deposition(EBPVD) technique, EBPVD was used to prepare the micro-layer composites. The effect on the substrate preheating temperature was taken into accounts and the finite element analysis package ANSYS was used to simulate the internal stress field and the potential displacement changing tendency. The results show that one of the most important quality factors on the judgment of micro-layer composites is the adhesion between the substrate and the deposition layers as well as among the different deposition layers. Besides the existance of temperature gradient through the thickness of layers, the main reason for the internal stress in micro-layer composites is the mismatch of various properties of the layer and the substrate of different thermal expansions and crystal lattice types. With the increase of substrate preheating temperature, the inter-laminar shear stress also takes on a tendency of increase but the axial residual stress decrease.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10875006 and 10811120014, and China Nuclear Data Center.
文摘Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is employed to record pulses from the two grids of the ionization chamber. The electron-drift velocity is measured as a function of the reduced electric field E/p for eight different ratios of Ar+CH4 mixtures. By analyzing the experimental data of this study, self-consistency of experimental data is achieved, and formulae for calculating electron-drift velocity in any ratio of Ar+CH4 mixtures are obtained.
文摘The microstructure and properties of stmulated heat affected zone (HAZ) of laser welded ULCB600 steel were investigate by applying the simulation technique with gleeble - 2000 dynamic thermal - me - chanical simulator.The influence of the preheat condition on the microstructure and properties of simu- lated HAZ of laser welded plate was also studied in order to evaluate the feasibility of reducing arisk that the ductility and toedness of HAZ may be poor by using preheat treatment.The results indicate that the grain size of laser - welded HAZ simulated is very small no matter if there is preheat, the toughness of simulated HAZ is therefore improved comparing to the base metal,and there is no obvious brittle - ductile transition in the range from - 80℃ to 20℃. The TEM analyses of sub -microstruc- ture also discover that microstructure constituent of both simulated HAZ is dominative lath martensite. However, the shaf of martensite is relatively coarse,and the dislocation density is relatively high for simulated HAZ with 200℃ preheat because of slower cooling rate. Combination of these tow factors is responsible for farer bardness and better toughness of simulated HAZ with preheat condition.
文摘We study the relation between the magnetic field structure and the induced electric-current distribution based on a cylindrical model composed of a uniform electrically conductive medium. When the time-varying magnetic fields are axisymmetrically applied in the axial direction of the model, the electric fields are induced around the central axis in accordance with Faradays law. We examine the eddy-current distributions generated by loop-coils with various geometries carrying an alternating electric current. It is shown that the radial structure of the induced fields can significantly be controlled by the loop coil geometry, which will be suitable for practical use especially in magnetic nerve stimulation on bioelectromagneties, if we appropriately p/ace the exciting coil with optimum geometry.
基金Supported by the National Natural Science Foundation of China under Grant No 10775009.
文摘Beam dynamics and rf designs of a 104 MHz ladder type IH-RFQ (L-IH-RFQ) accelerator are finished at Peking University for the acceleration of 14C+ from 40 keV to 500 keV. As a specific feature, the output beam energy spread is as low as 0.6% achieved with the internal discrete bunching method, which makes potential applications of RFQ feasible, such as accelerator mass spectrometry and ion implantation. Tolerances of the beam dynamics design are studied by means of changing the input beam parameters, and the results are quite satisfying. On the other hand, the L-IH-RFQ structure is employed, taking advantage of its mechanical stability and the absence of inter-electrode voltage asymmetry. Radio-frequency properties are studied and optimized for reducing power loss with Microwave Studio (MWS). Tuning of the field flatness and frequency is investigated in principle.
文摘The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported. We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.
文摘A 30-MeV femto-second electron linac is built at the Shanghai Institute of Applied Physics, which can produce high power, coherent THz undulator radiation. We report the experimental facility and measurement of the power, frequency spectrum. First experiments show the averaged power at THz to be about 20mW.
基金Supported by the Foundation of China Academy of Engineering Physics under Grant No 10576040, and the National Natural Science Foundation of China under Grant No 10705054.
文摘Accelerator mass spectrometry (AMS) is one of the most promising methods to detect minute amounts of 182Hf. However, the sensitivity of 5×10^-11 for ^182Hf/180Hf obtained previously by the AMS method at China Institute of Atomic Energy (CIAE) cannot meet the requirement of some applications. We present some new improvements of measurement method for AMS measurement of 182Hf at the CIAE HI?13 tandem accelerator system. As a result, a sensitivity of 1.0×10^-11 for 182Hf/180Hf is achieved.
基金Supported by the National Key Basic Research Program of China under Grant No 2006CB806004, the National Natural Science Foundation of China under Grant Nos 10675155 and 10834008, Scientific Research Foundation for Awarder of Excellent Doctor Thesis, and President Award of Chinese Academy of Sciences (No 0801051-X00).
文摘Two dimensional particle-in-cell simulations are taken to study the interaction of a circularly polarized laser pulse with a nano-scale micro-structured target. The protons which are doped in the rear side of the target experience the electrostatic fields caused by both the radiation pressure driven shock and the target normal sheath at the rear side of the target. A quasimonoenergetic proton bunch with central energy of about 11MeV and energy spread of ∆ ε/ε about 0.18 is achieved by using a 3.45×1019 W/cm2, 66fs laser pulse. A comparison with the case of linearly polarized laser pulse and the same target condition is considered.
文摘For heating the tokamak plasma effectively, the ion source must be capable of producing ions with high proton ratio. The proton ratio, which is found to be more than 65.6% at the ion current of 19.6A with the extraction voltage of 39.6 k V, is measured with an image spectrograph by Doppler shift effect of Balmer-α-radiation spectrum emitted from fast hydrogen particles. The tendency of proton ratio with the ion density in experiment is almost the same as the mode devised by Zhang et al. Okumura et al. only gave the affection of the plasma volume and ion loss area on the proton ratio, but the relationship between the ion density in chamber and the proton ratio was not presented. We give the relationship.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10734140, 10874156 and 10875109.
文摘An experimental measurement of radiatively heated iron plasma transmission spectra was performed on Shenguang II laser facility. In the measurement, the self?emission spectrum, the backlighting spectrum, and the absorption spectrum were imaged with a flat filed grating and recorded on a gated micro channel plate detector to obtain the time-resolved transmission spectra in the range 10-20 ? (approximately 0.6-1.3 keV). Experimental results are compared with the calculation results of an unsolved transition array (UTA) code. The time-dependent relative shift in the positions of the 2p-3d transmission array is interpreted in terms of the plasma temperature variations.
文摘Specific activity of primordial radionuclides and associated radiation hazards due to 40K, 226Ra, and 232Th have been measured in backed red brick samples, collected from five highly populated areas of the North West Frontier Province of Pakistan. For the detection, analysis and data acquisition, a high purity germanium detector was used. Associated external doses were calculated using a Monte Carlo neutron photon transport code. A theoretical model to determine the gamma dose rate at 1 m height from the floor, made of bricks, was employed for the calculation of mass attenuation coefficient and self-absorption in the floor for the gamma energies of these radionuclides and their progeny. Monte Carlo simulation shows that in this study the floor, having more than an effective thickness of 15 cm, contributes very little to the external gamma dose rate. The values of the external dose rate and annual effective dose are found to be much lower than the world average as well as from other countries of the world.
基金National Natural Science Foundation of China (50771009, 50731001) National Basic Research Program of China (2010CB631200) Research Fund for the Doctoral Program of Higher Education of China (20070006017)
文摘β-NiAl is a potential oxidation-resistant coating material to be operated at temperatures above 1 150 ℃. In this paper,β-NiAl coatings with 0-0.5 at% Dy are prepared by electron beam physical vapor deposition (EB-PVD). Transient oxidation behavior of the coatings is investigated. At 1 200 ℃, only stable α-Al2O3 phase is observed on the 0.05 at% doped coating, whereas the phase transfomlation from θ-Al2O3 to α-Al2O3 occurs in the 0.5 at% Dy doped coating during 1 h oxidation. At 1 100 ℃, all the coatings reveal the transient transformation of θ-α in the early 15 min and the transformation for the 0.05 at% Dy doped coating is completed within 45 min, much earlier than that for the 0.5 at% Dy doped coating. Overdoping of Dy retards the transformation of θ-α. The undoped and overdoped coatings reveal the whisker structure of θ-Al2O3 even after 20 h oxidation at 1 100 ℃, while the 0.05 at% Dy coating reveals typical granulated structure of α-Al2O3.
基金The Deutsche Forschungsgemeinschaft(DFG)under grant No.Schu1372/5-1,Consejo Nacional de Ciencia y Tecnologia(CONACYT)National Science Foundation(NSF)with NSF-PREM grant No.DMR-1827745。
文摘The effects of YO(1.5)doping in yttria-zirconia based thermal barrier coatings(TBCs)against CMAS interaction/infiltration are discussed.The TBCs with an YO(1.5)content ranging from 43–67 mol.%(balance Zr O2)were produced by electron beam physical vapor deposition(EB-PVD)techniques.The results reveal a trend of higher apatite formation probability with the higher free YO(1.5)available in the yttriazirconia system.Additionally,the infiltration resistance and amount of consumed coating appears to be strongly dependent on the YO(1.5)content in the coating.The thinnest reaction layer and lowest infiltration was found for the highest produced 67 YO(1.5)coating.Complementary XRD experiments with volcanic ash/YO(1.5)powder mixtures with higher yttria contents than in the coatings(80 YO(1.5)and pure YO(1.5))also showed higher apatite formation with respect to increasing yttria content.The threshold composition to promote apatite-based reaction products was found to be around 50 YO(1.5)in zirconia which was proved in the coatings and XRD powder experiments.An YO(1.5)-ZrO2-Fe O-TiO2 bearing zirconolite-type phase was formed as a reaction product for all the coating compositions which implicates that TiO2 in the melt acts as a trigger for zirconolite formation.This phase could be detrimental for CMAS/volcanic ash infiltration resistance since it can be formed alongside with apatite which controls or limits the amount of Y^(3+)available for glass crystallization.The Fe rich garnet phase containing all the possible elements exhibited a slower nucleation compared to apatite and its growth was enhanced with slow cooling rates.The implications of phase stability and heat treatment effects on the reaction products are discussed for tests performed at 1250°C.
基金financially sponsored by the National Natural Science Foundations of China(Nos.51590894,51425102 and 51231001)。
文摘Thermal barrier coatings(TBCs) consisting ofLa_(2)Ce_(2)O_(7)(LCO) and Y_(2)O_(3)-stabilized-ZrO_(2)(YSZ) doubleceramic layer and Dy/Pt co-doped NiAl bond coat were produced by electron beam physical vapor deposition(EBPVD). Thermal cyclic performance of the TBCs was evaluated by flame shock testing at 1300 ℃. For comparison, the TBCs with a undoped NiAl bond coat were also studied. The microstructural evolution and failure mechanisms of the above TBCs during thermal cycling were investigated. Spallation failure of the TBCs with the undoped bond coat occurs after around 500 cycles by cracking at the interface between YSZ ceramic layer and thermally grown oxides(TGO) layer. The TBCs with Pt/Dy modified bond coat reveal improved interface bonding even after 1200 thermal cycles, whereas some delamination cracks are presented in the LCO layer. On the other hand,the Pt/Dy modified bond coat effectively suppresses the formation of the needle-like topologically closed packed phases(TCP) in the single crystal superalloy.
基金financially supported by the National Natural Science Foundation of China (Nos. 51104131 and 51201152)Heilongjiang Provincial Natural Science Foundation of China (No. E201247)the Open Fund of Zhejiang Provincial Top Key Discipline (No. 20110929)
文摘In this research, a nano-Mo2 C particle dispersion-strengthened copper alloy was prepared by a novel method, i.e., electron beam physical vapor deposition(EBPVD) which has advantages of simple technical process and low cost compared with the conventional mechanical alloying method. And the microstructure and properties of the material were investigated. The results show that the copper matrix is composed of columnar crystals with the average width of 7 lm, and the size of Mo2 C dispersoid is1–7 nm. The ultimate tensile strength of the material is486 MPa, and the electrical conductivity is 82 % IACS. As the temperature increases from 293 to 573 K, the material becomes more brittle.
基金the financing support of the budget(022/11-B)of the G.V.Kurdyumov Institute for Metal Physics of NAS of Ukrainethe budget(1.6.3.13/33) of the E.O.Paton Electric Welding Institute of NAS of Ukraine
文摘The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size of characteristic microstructural elements (grains and subgrains). It was shown that refinement of foil microstructural elements to nanoscale is accompanied by their microhardness increase up to 4-5 GPa. The change of the thermal expansion coefficient (TEC) of the nanostructured (NS) foil of the Fe-35.1Ni alloy within the temperature range from -50 to 150 ℃ has some deviation from that observed for cast Invar alloy of the same composition. It has been found that the main factors affecting the peculiarities of thermal expansion of the NS foil can be related to the presence of small fraction of BCC- phase in them, high level of crystalline lattice microstrains and inhomogeneous magnetic order in FCC- phase. It was shown that as a result of additional thermal treatment of NS foils their invar properties become similar to that observed for cast Invar alloy but mechanical properties remain on the same level.