期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-Dimensional Analysis of Thermal Effect on Skin Exposure to an Electromagnetic Beam 被引量:2
1
作者 Hongyun Wang Wesley A. Burgei Hong Zhou 《American Journal of Operations Research》 2020年第5期147-162,共16页
We consider the problem of inducing withdrawal reflex on a test subject by exposing the subject’s skin to an electromagnetic beam. Heat-sensitive nociceptors in the skin are activated wherever the temperature is abov... We consider the problem of inducing withdrawal reflex on a test subject by exposing the subject’s skin to an electromagnetic beam. Heat-sensitive nociceptors in the skin are activated wherever the temperature is above the activation temperature. Withdrawal reflex occurs when the activated volume reaches a threshold. We non-dimensionalize the problem to write the temperature as the product of a parameter-free function of non-dimensional variables and a function of beam parameters. This formulation allows studying beam parameters without knowing skin material parameters. We examine the effects of spot size, total power and distribution type of the electromagnetic beam on 3 quantities at reflex: 1) the time to reflex, 2) the maximum temperature increase, and 3) the total energy consumption. We find that the flat-top beam is the best, with the lowest energy consumption and the smallest maximum temperature increase. The Super-Gaussian beam is only slightly inferior to the flat-top. The Gaussian beam has by far the worst performance among these three. 展开更多
关键词 Heat-Sensitive Nociceptor Heat-Induced Withdrawal Reflex radius and Distribution Type of Electromagnetic beam Non-Dimensional Analysis
下载PDF
Model-driven path planning for robotic plasma cutting of branch pipe with single Y-groove based on pipe-rotating scheme
2
作者 Yan Liu Qiu Tang Xin-Cheng Tian 《Advances in Manufacturing》 SCIE EI CAS 2024年第1期94-107,共14页
The automatic cutting of intersecting pipes is a challenging task in manufacturing.For improved automation and accuracy,this paper proposes a model-driven path planning approach for the robotic plasma cutting of a bra... The automatic cutting of intersecting pipes is a challenging task in manufacturing.For improved automation and accuracy,this paper proposes a model-driven path planning approach for the robotic plasma cutting of a branch pipe with a single Y-groove.Firstly,it summarizes the intersection forms and introduces a dual-pipe intersection model.Based on this model,the moving three-plane structure(a description unit of the geometric characteristics of the intersecting curve)is constructed,and a geometric model of the branch pipe with a single Y-groove is defined.Secondly,a novel mathematical model for plasma radius and taper compensation is established.Then,the compensation model and groove model are integrated by establishing movable frames.Thirdly,to prevent collisions between the plasma torch and workpiece,the torch height is planned and a branch pipe-rotating scheme is proposed.Through the established models and moving frames,the planned path description of cutting robot is provided in this novel scheme.The accuracy of the proposed method is verified by simulations and robotic cutting experiments. 展开更多
关键词 Automatic groove cutting of intersecting pipes Model-driven robot path planning Plasma beam radius and taper compensation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部