期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical Study of the Vibrations of Beams with Variable Stiffness under Impulsive or Harmonic Loading
1
作者 Moussa Sali Fabien Kenmogne +1 位作者 Jean Bertin Nkibeu Abdou Njifenjou 《World Journal of Engineering and Technology》 2024年第2期401-425,共25页
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho... The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%. 展开更多
关键词 Successive Approximations Method Direct Integration Differential Equations beams of Variable stiffness Quadratic Parabola Impulse and Harmonic Loads
下载PDF
Damage detection method in complicated beams with varying flexural stiffness
2
作者 冯侃 励争 +1 位作者 高桂云 苏先樾 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期469-478,共10页
A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying... A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications. 展开更多
关键词 nondestructive testing modal strain energy varying flexural stiffness beam fiber reinforced composite material wind turbine blade
下载PDF
Elastically restrained Bernoulli-Euler beams applied to rotary machinery modelling 被引量:2
3
作者 Tiago A.N.Silva Nuno M.M.Maia 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第1期56-62,共7页
Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of con... Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length.Based on Rayleigh’s quotient,an iterative strategy is developed to find the approximated torsional stiffness coefficients,which allows the reconciliation between the theoretical model results and the experimental ones,obtained through impact tests.The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh’s quotient but also on the mode shapes,considering the shape functions defined in branches.Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies. 展开更多
关键词 Transverse vibration of beams · Elastic supports · Torsional stiffness coefficients
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部