期刊文献+
共找到3,505篇文章
< 1 2 176 >
每页显示 20 50 100
Dynamic Characteristics of Long -Span Steel -Concrete CompositeBeam Bridge Based on Vehicle -Bridge Coupling Effect
1
作者 WANG Jianxing CAI Ran +1 位作者 JIA Yumeng ZHANG Jianmeng 《吉首大学学报(自然科学版)》 CAS 2024年第5期45-51,共7页
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat... In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192. 展开更多
关键词 highway bridge vehicle-bridge coupling effect steel-concrete composite beam suspension bridge dynamic characteristics
下载PDF
Numerical investigation of temperature gradient-induced thermal stress for steel–concrete composite bridge deck in suspension bridges 被引量:7
2
作者 WANG Da DENG Yang +1 位作者 LIU Yong-ming LIU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期185-195,共11页
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit... A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study. 展开更多
关键词 suspension bridge steel–concrete composite bridge deck vertical temperature gradient finite element method thermal stress
下载PDF
Internal Force Distribution in Steel-Concrete Composite Structure for Pylon of Cable-Stayed Bridge 被引量:5
3
作者 蒲黔辉 白光亮 《Journal of Southwest Jiaotong University(English Edition)》 2009年第2期95-101,共7页
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure... Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load. 展开更多
关键词 Stud connector Experimental research Steel-concrete composite structure Cable-stayed bridge Internal force distribution
下载PDF
Structure and behavior of floor system of two super high-speed railway Changjiang composite bridges 被引量:3
4
作者 张晔芝 张敏 《Journal of Central South University》 SCIE EI CAS 2011年第2期542-549,共8页
Wuhan Tianxingzhou Changjiang (WTC) Bridge and Nanjing Dashengguan Changjiang (NDC) Bridge are two super high-speed railway 3-trusses composite bridges. This is the first time of using three trusses in such large brid... Wuhan Tianxingzhou Changjiang (WTC) Bridge and Nanjing Dashengguan Changjiang (NDC) Bridge are two super high-speed railway 3-trusses composite bridges. This is the first time of using three trusses in such large bridges in the world. These two types of railway floor systems of the two bridges have never been used in China before. The problem how to conform the deformations and stress levels of the railway floor system of WTC Bridge was studied. After finite element analysis and comparison,the plan of arranging one expansion stringer every two panels in railway floor system were proposed and good effect was obtained. Because of the application of three trusses,the allocation of the loads acted on the deck in three trusses is different and varies in different places of NDC Bridge. This problem was studied by model experiment and 3D finite element analysis. The results of 3D FEM analysis coincide with the model test results. The allocation rule of the loads acting on the deck in three trusses was presented. Because of the application of monolithic decks,the stiffness and structural integrity of NDC Bridge are high. 展开更多
关键词 high-speed railway composite mechanics characteristics floor system Wuhan Tianxingzhou Changjiang bridge Nanjing Dashengguan Changjiang bridge
下载PDF
Improved methods for decreasing stresses of concrete slab of large-span through tied-arch composite bridge 被引量:2
5
作者 周德 叶梅新 罗如登 《Journal of Central South University》 SCIE EI CAS 2010年第3期648-652,共5页
Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on compariso... Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously. 展开更多
关键词 composite bridge concrete slab tension through tied-arch large span finite element method
下载PDF
Design methods of headed studs for composite decks of through steel bridges in high-speed railway 被引量:1
6
作者 侯文崎 叶梅新 《Journal of Central South University》 SCIE EI CAS 2011年第3期946-952,共7页
Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure... Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB. 展开更多
关键词 through steel bridge steel-concrete composite deck mechanical characteristics STUD design method
下载PDF
Structural Performance of Light Weight Multicellular FRP Composite Bridge Deck Using Finite Element Analysis 被引量:1
7
作者 Woraphot Prachasaree Pongsak Sookmanee 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期939-943,共5页
Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to ob... Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to obtain more efficient and cost effective structural materials and systems. Currently, FRP composites are becoming more popular in civil engineering applications. The objectives of this research are to study performance and behavior of light weight multi-cellular FRP composite bridge decks (both module and system levels) under various loading conditions through finite element modeling, and to validate analytical response of FRP composite bridge decks with data from laboratory evaluations. The relative deflection, equivalent flexural rigidity, failure load (mode) and load distribution factors (LDF) based on FE results have been compared with experimental data and discussed in detail. The finite element results showing good correlations with experimental data are presented in this work. 展开更多
关键词 fiber reinforced polymer (FRP) composites bridge deck finite element
下载PDF
Research review on steel–concrete composite joint of railway hybrid girder cable-stayed bridges 被引量:2
8
作者 Zhou Shi Jiachang Gu +1 位作者 Yongcong Zhou Ying Zhang 《Railway Sciences》 2022年第2期241-259,共19页
Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/me... Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge. 展开更多
关键词 RAILWAY Hybrid girder cable-stayed bridge Steel-concrete composite joint STRUCTURE Stress characteristics REVIEW
下载PDF
Experimental Study on Shear Behavior of New-Type Steel-Concrete Composite Bridge Deck
9
作者 Qiu Zhao Yang Du +2 位作者 Wenping Cai Ming Yang Rui Dong 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第6期66-77,共12页
To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular... To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular connectors and steel-reactive powder concrete (RPC). Push-out tests were conducted to study the newdeck's shear performance. During the experimental process,specimens were divided into two groups which are composed of steel tubular connectors with or without penetrative bars set in. Then,researchers analyzed destroyed models and mechanisms of the composite structure under shear forces. Results showed that test models in two groups,once destroyed,displayed similar shear fracture,which appeared on the lower margin of the steel tubular wall along the welds. Meanwhile,RPC under the connector,for varied tests,was crushed at the same stage,although the large shear and bending deformation just occurred on connectors with penetrative bars. Additionally,shear capacity of specimens with penetrative bars,compared with the ones without bars,unexpectedly decreased by 20%,but the structural ductility was 1.75 times as much,and the ductility coefficients of specimens were all larger than 3.5,demonstrating certain deformation capacity. 展开更多
关键词 composite bridge DECK push-out tests RPC steel TUBULAR connectors failure mode
下载PDF
Bridge Structures with GFRP Composite Deck
10
作者 Beata Stankiewicz 《Open Journal of Civil Engineering》 2015年第1期53-62,共10页
In this paper, author’s first part of research of GFRP bridge deck (using ASSET fiber line composite modular system) took part at AGH University of Science and Technology Laboratory of Glass Technology and Amorphous ... In this paper, author’s first part of research of GFRP bridge deck (using ASSET fiber line composite modular system) took part at AGH University of Science and Technology Laboratory of Glass Technology and Amorphous Coatings Department. The analysis consisted spectrometer analysis of chemical constitution of glass fiber, identification of material according to Fourier spectroscopy, electronic scan microscopy (SEM/EDAX) and DTA analysis. The modal FEM analysis of chosen footbridge with light GFRP deck has been presented in the paper. 展开更多
关键词 GFRP bridge DECK by Material ANALYSIS MODAL ANALYSIS of FOOTbridge composite DECK
下载PDF
Application Strategy of Carbon Fiber Composite Materials in Bridge Reconstruction Project
11
作者 Yueqi Gao 《Journal of Architectural Research and Development》 2021年第1期1-3,共3页
Initially,the materials used in the process of bridge construction were mainly wood,stone,etc.,and gradually the concrete,steel and other types of special materials currently in-use were developed.With the current vig... Initially,the materials used in the process of bridge construction were mainly wood,stone,etc.,and gradually the concrete,steel and other types of special materials currently in-use were developed.With the current vigorous development of science,technology and social economy in China,the development of bridge projects has also been accelerated to a large extent.In recent years,China has not only studied on how to strengthen the performance of concrete,steel and other materials in bridge projects,but also the performance of the recently developed smart,nano-,fibrous and other types of materials.This paper focuses on the application strategy of carbon fiber composite materials in bridge reconstruction projects to serve as a reference. 展开更多
关键词 Carbon fiber composite material bridge reconstruction
下载PDF
Parameter analysis of composite pile foundation in bridge foundation
12
作者 LI Guangxing WANG Rusheng +1 位作者 WANG Lei WANG Jinsong 《Global Geology》 2012年第1期42-47,共6页
In the current theory of bridge foundation design,all of the loads above the cap are loaded by the pile,and the bearing capacity of the soil among piles is not taken into account.In order to analyze the bearing capaci... In the current theory of bridge foundation design,all of the loads above the cap are loaded by the pile,and the bearing capacity of the soil among piles is not taken into account.In order to analyze the bearing capacity of the soil among piles in bridge pile foundation,a model of pile foundation is established based on a bridge foundation which is under construction,and by the finite element analysis software ANSYS.According to the results of finite element analysis(FEA)and current bridge foundation design theory,a feasible composite pile foundation which can be applied in the design of bridge foundation,is recommended.Additionally,a number of modifications are made to the original design.It was confirmed that these modifications derived from numerical simulations can improve the performance of the foundation. 展开更多
关键词 composite pile foundation bridge foundation finite element simulation analysis
下载PDF
Comparison and Selection of Arch-Rib Construction Schemes for Continuous Beam arch Composite Bridge of High Speed Railway
13
作者 ZHOU Weiming ZHENG Mingda(Translated) 《Chinese Railways》 2023年第2期35-43,共9页
The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ ass... The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application. 展开更多
关键词 high-speed railway(HSR) continuous beam-arch composite bridge arch rib in-situ assembly segmental lifting incremental launching and longitudinal moving vertical rotation
下载PDF
Weldability of steel used in an aged bridge
14
作者 Hirohata Mikihito 《China Welding》 CAS 2024年第3期33-38,共6页
A series of experiments was performed to investigate the weldability of steel used in an aged bridge.A steel material used in an aged railway bridge constructed in 1912 was extracted for this investigation.The chemica... A series of experiments was performed to investigate the weldability of steel used in an aged bridge.A steel material used in an aged railway bridge constructed in 1912 was extracted for this investigation.The chemical compositions of this steel were suitable for welding.However,the aged steel contained much sulfur.Cruciform welded joints were fabricated with this aged steel.Welding defects or cracks were not observed in the joints.The Vickers hardness test on the welded part did not confirm extreme hardening or softening.After yielding by the static tensile test,the cruciform joints were fractured at the welded parts.One of the specimens was fractured in the middle of the thickness of the aged steel.The Sulfur contained in the aged steel might cause this type of fracture.The results show that there may be a risk of brittle fracture not only from the welded part but also from the base metal.The chemical compositions of aged steel must be analyzed when repair welding is applied to the steel. 展开更多
关键词 aged steel bridge repair welding chemical compositions weld defect brittle fracture
下载PDF
Design and evaluation of UHPP steel bridge deck pavement for high-temperature and rainy regions
15
作者 Qian Zhendong Zhang Shaojin +1 位作者 Min Yitong Zhao Xinyuan 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期257-265,共9页
To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of... To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance. 展开更多
关键词 steel bridge deck pavement(SBDP) high-temperature environment rainy weather rigid bottom and flexible top temperature field composite structure
下载PDF
Analytical Solutions of a Symmetrical Dynamic Crack Model of Bridging Fibers in Unidirectional Composites 被引量:1
16
作者 Nianchun Lü Yunhong Cheng +1 位作者 Yuntao Wang Jin Cheng 《World Journal of Mechanics》 2013年第5期22-32,共11页
When composite materials occur crack, their fibrous locations will produce bridging fibers. A symmetrical dynamic crack model of bridging fibers in unidirectional composite materials are not probed as deeply by virtue... When composite materials occur crack, their fibrous locations will produce bridging fibers. A symmetrical dynamic crack model of bridging fibers in unidirectional composite materials are not probed as deeply by virtue of the complexity, cockamamie and difficulty in mathematical operations. In the light of the theory of complex variable functions, the problems discussed can be facilely translated into Remann-Hilbert problems. Analytical solutions of the displacements, stresses and stress intensity factors under the action of variable loads Pt6/x6, Px6/t5 are attained, respectively. After those analytical solutions were used by superposition theorem, the solutions of arbitrary complex problems were acquired. 展开更多
关键词 composite Materials bridgING Fibers ANALYTICAL Solutions CRACK VARIABLE Loads
下载PDF
Properties of frictional bridging in fiber pull-out for fiber-reinforced composites
17
作者 刘鹏飞 陶伟明 郭乙木 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第B08期8-16,共9页
Stress equilibrium equations, boundary- and continuity-conditions were used to establish a theoretical model of progressive debonding with friction at the debonded interface. On a basis of the minimum complementary en... Stress equilibrium equations, boundary- and continuity-conditions were used to establish a theoretical model of progressive debonding with friction at the debonded interface. On a basis of the minimum complementary energy principle, an expression for the energy release rate G was derived to explore the interfacial fracture properties. An interfacial debonding crite- rion G≥Γi was introduced to determine the critical debond length and the bridging law. Numerical calculation results for fi- ber-reinforced composite SCS-6/Ti-6Al-4V were compared with those obtained by using the shear-lag models. 展开更多
关键词 Fiber pull-out Energy release rate bridging law Fiber-reinforced composites
下载PDF
Prediction of three-dimensional elastic behavior of filament-wound composites based on the bridging model
18
作者 Dong-mei Yin Bao-ming Li Hong-cheng Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期609-616,共8页
This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume e... This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume element(RVE)is defined and the bridging model is adopted to establish a theoretical predictive model for its three-dimensional equivalent elastic constants.The results obtained through this method for the previous experimental model are compared with the ones gained respectively by experiments and classical laminate theory to verify the reliability of this model.In addition,the effects of some winding parameters,such as winding angle,on the equivalent elastic behavior of the filament-wound composites are analyzed.The rules gained can provide a theoretical reference for the optimum design of filament-wound composites. 展开更多
关键词 Lightweight design Filament-wound composites bridging model Three-dimensional elastic properties
下载PDF
Analytical Solutions of Dynamic Crack Models of Bridging Fiber Pull-Out in Unidirectional Composite Materials
19
作者 Yuntao Wang Yunhong Cheng +1 位作者 Nianchun Lü Jin Cheng 《Modern Mechanical Engineering》 2013年第4期191-201,共11页
An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane was analyzed, and the crack extension should occur in the format ... An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane was analyzed, and the crack extension should occur in the format of self-similarity. When the fiber strength is over its maximum tensile stress, the fiber breaks. By means of complex variable functions, the problem considered can be easily translated into Reimann-Hilbert mixed boundary value problem. Utilizing the built dynamic model of bridging fiber pull-out in unidirectional composite materials, analytical solutions of the displacements, stresses and stress intensity factors under the action of increasing loads Pt5/x5, Px5/t4 are obtained, respectively. After those analytical solutions were used by superposition theorem, the solutions to arbitrary complex problems were acquired. 展开更多
关键词 composite Materials bridgING Fibers ANALYTICAL Solutions CRACK Variable Loads
下载PDF
Design and laboratory evaluation of fog-sealed chip seal on epoxy asphalt pavement for steel bridge deck 被引量:4
20
作者 郑冬 钱振东 +1 位作者 王睿 刘阳 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期101-105,共5页
In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal)... In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance. 展开更多
关键词 pavement maintenance composite seal epoxy asphalt laboratory evaluation pavement condition simulation steel bridge deck pavement
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部