Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the informa...Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well.展开更多
Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume cont...Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.展开更多
The new adhesive material for the construction joints of tunnel lining(named as SZC) was studied based on the structural characteristics of interfaces and the characteristic of bonding construction, and the performanc...The new adhesive material for the construction joints of tunnel lining(named as SZC) was studied based on the structural characteristics of interfaces and the characteristic of bonding construction, and the performance indexes were verified by tests. The experimental results show that the adhesive capability of interface is improved effectively by using SZC material, the properties, such as anti-freezing, erosion-resistance and anti-shrinkage are improved greatly as well as durability.展开更多
Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This...Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions.展开更多
On December 20,2016 the construction of the SinoKuwait Guangdong integrated refining/chemical join venture project,which is the largest Sinopec’s projec under construction and also the key construction project of Gua...On December 20,2016 the construction of the SinoKuwait Guangdong integrated refining/chemical join venture project,which is the largest Sinopec’s projec under construction and also the key construction project of Guangdong province,had been kicked off comprehensively.This project is located in the new district of the East Sea Island inside the Zhanjiang Economic Development展开更多
In the Republic of Kazakhstan, the regulatory framework in construction based on Eurocodes has been in force since 2015. However, Kazakhstani produced steel has not been studied for compliance with the requirements of...In the Republic of Kazakhstan, the regulatory framework in construction based on Eurocodes has been in force since 2015. However, Kazakhstani produced steel has not been studied for compliance with the requirements of Eurocode 1993. This has resulted in limited use of Kazakhstani structural steel in construction. The feasibility of using structural steel in welded joints has been experimentally investigated. To verify the application of such joints in construction, including earthquake engineering, experimental studies of welded joints made of structural steel produced by Arcelor-Mittal in Temirtau have been carried out. In total, 7 types of structural steel of various thicknesses were selected. Five specimens have been used in each series of tests. The Brinell hardness values of the weld joint, yield strength of steel and tensile strength, relative rupture strain were determined. It was found that for all types of structural steel, the quality of weld joints complied with the requirements of Eurocode 1993—a sample rupture appeared along the plates (main body of the metal), not along the weld joints. It has been established that structural steel produced in the Republic of Kazakhstan fully complies with the requirements of Eurocode 1993. The studies on the dependence of Brinell hardness values of weld joint steel on the yield strength, tensile strength and relative rupture strain have been carried out. The correlation dependences between the values of yield strength of steel and tensile strength, relative rupture strain and BH Brinell hardness were studied. The results of work will allow for significantly increasing the use of Kazakhstani structural steel in seismic and conventional areas of the Republic of Kazakhstan.展开更多
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the p...Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at t...This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.展开更多
In order to well protect Chinese ancient buildings, aseismic behaviors of Chinese ancient tenon-mortise joints strengthened by carbon fibre reinforced plastic (CFRP) are studied by experiments. Based on the actual s...In order to well protect Chinese ancient buildings, aseismic behaviors of Chinese ancient tenon-mortise joints strengthened by carbon fibre reinforced plastic (CFRP) are studied by experiments. Based on the actual size of an ancient building, a wooden frame model with a scale of 1 : 8 of the prototype structure is built considering the swallow-tail type of tenon-mortise connections. Low cyclic reversed loading tests are carried out including three groups of unstrengthened structures and two groups of structures strengthened with CFRP. Based on experimental data, moment-rotation angle hysteretic curves and skeleton curves for each joint are obtained. The energy dissipation capability, stiffness degradation and deformation performance of the joints before and after being strengthened are also analyzed. Results show that after being strengthened with CFRP, the tenon value pulled out of the mortise is reduced; the bending strength and the energy dissipation capabilities of the joint are enhanced; stiffness degradation of the joint is not obvious; and the deformation performance of the joint remains good. Thus, the CFRP has good effects on strengthening the tenon-mortise joints of Chinese ancient buildings.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
This paper presents a new FRP retrofi tting scheme to strengthen local beam-column joints in reinforced concrete(RC) frames.The new retrofi tting scheme was proposed following a preliminary study of four different exi...This paper presents a new FRP retrofi tting scheme to strengthen local beam-column joints in reinforced concrete(RC) frames.The new retrofi tting scheme was proposed following a preliminary study of four different existing retrofi tting schemes.A numerical simulation was conducted to evaluate the effectiveness of FRP-strengthened reinforced concrete frames by bridging behavior of local joints to the whole structure.Local confi nement effects due to varying retrofi tting schemes in the joints were simulated in the frame model.The seismic behavior factor was used to evaluate the seismic performance of the strengthened RC frames.The results demonstrated that the new proposed retrofi tting scheme was robust and promising,and fi nite element analysis appropriately captured the strength and global ductility of the frame due to upgrading of the local joints.展开更多
Beam-Column joints are critical zones in reinforced concrete structures which are most vulnerable to earthquake forces. Hence strengthening beam-column joint is vital to save the structure and its inhabitants in case ...Beam-Column joints are critical zones in reinforced concrete structures which are most vulnerable to earthquake forces. Hence strengthening beam-column joint is vital to save the structure and its inhabitants in case of seismic forces. Numerous retrofitting works using fibre reinforced polymer (FRP) composites are being undertaken worldwide. This work aims to investigate the effectiveness of strengthening beam-column joints using natural and artificial fibres. In this study, basalt (natural fibres) as monolithic composite (BFRP) and as hybrid composite along with glass (artificial fibres) were used for strengthening of beam-column joints. Totally six specimens were prepared and tested under monotonic loading. Specimen details used were: two control specimen, two specimens for monolithic wrapping and remaining two specimens for hybrid wrapping. The test results were compared with control and rehabilitated specimens. The performance of the treated joints was studied using the following parameters: initial and ultimate cracking loads, energy absorption, deflection ductility and stiffness at ultimate. From the test results, it was found that the hybrid combination of Basalt and Glass FRPs were found to be more effective in the treatment of beam-column joints. The strong column weak beam concept was achieved by failure in beam portion which helped in preventing the catastrophic failure of the entire structure.展开更多
Based on the construction property of rolled compacted concrete, three-dimensional finite element relocating mesh method was developed in simulating construction process and computing temperature and stress field. Usi...Based on the construction property of rolled compacted concrete, three-dimensional finite element relocating mesh method was developed in simulating construction process and computing temperature and stress field. Using this method, the temperature and the thermal stress fields developed in the RCC gravity dam of the Longtan project with or without a longitudinal joint during construction and operation are calculated so as to simulate the construction process. The computation results show that the value of the thermal stresses developed in the dam even, without any longitudinal joint, could meet the design criteria provided the placement temperature is adequately controlled.展开更多
The construction and development of social public management's new normal depend on the scientific transformation of government functionalization orientation and highlighting the role of grassroots public's ex...The construction and development of social public management's new normal depend on the scientific transformation of government functionalization orientation and highlighting the role of grassroots public's extensive illustrations on social issues and social conditions.Based on this situation,in the process of public participation mechanism construction,it is necessary to emphasize that the construction of joint elements should be carried out systematically and comprehensively,and to dig deep into the relations and functions of all elements.When the stability of public participation mechanism construction is fully guaranteed,it will extensively supervise and evaluate the development of government's social public management cause,help achieve the final goal of coordinating social development environment and social development elements,ensure that the intrinsic value of public participation mechanism can be thoroughly displayed.展开更多
文摘Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well.
基金Projects(51621006,51779251)supported by the National Natural Science Foundation of China。
文摘Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.
文摘The new adhesive material for the construction joints of tunnel lining(named as SZC) was studied based on the structural characteristics of interfaces and the characteristic of bonding construction, and the performance indexes were verified by tests. The experimental results show that the adhesive capability of interface is improved effectively by using SZC material, the properties, such as anti-freezing, erosion-resistance and anti-shrinkage are improved greatly as well as durability.
基金Sponsored by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2019MEE047)the National Key Research and Development Project of China (Grant No. 2020YFB1901403)CSCEC Technical and Development Plan (Grant No. CSCEC-2020-Z-35)。
文摘Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions.
文摘On December 20,2016 the construction of the SinoKuwait Guangdong integrated refining/chemical join venture project,which is the largest Sinopec’s projec under construction and also the key construction project of Guangdong province,had been kicked off comprehensively.This project is located in the new district of the East Sea Island inside the Zhanjiang Economic Development
文摘In the Republic of Kazakhstan, the regulatory framework in construction based on Eurocodes has been in force since 2015. However, Kazakhstani produced steel has not been studied for compliance with the requirements of Eurocode 1993. This has resulted in limited use of Kazakhstani structural steel in construction. The feasibility of using structural steel in welded joints has been experimentally investigated. To verify the application of such joints in construction, including earthquake engineering, experimental studies of welded joints made of structural steel produced by Arcelor-Mittal in Temirtau have been carried out. In total, 7 types of structural steel of various thicknesses were selected. Five specimens have been used in each series of tests. The Brinell hardness values of the weld joint, yield strength of steel and tensile strength, relative rupture strain were determined. It was found that for all types of structural steel, the quality of weld joints complied with the requirements of Eurocode 1993—a sample rupture appeared along the plates (main body of the metal), not along the weld joints. It has been established that structural steel produced in the Republic of Kazakhstan fully complies with the requirements of Eurocode 1993. The studies on the dependence of Brinell hardness values of weld joint steel on the yield strength, tensile strength and relative rupture strain have been carried out. The correlation dependences between the values of yield strength of steel and tensile strength, relative rupture strain and BH Brinell hardness were studied. The results of work will allow for significantly increasing the use of Kazakhstani structural steel in seismic and conventional areas of the Republic of Kazakhstan.
文摘Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
文摘This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.
基金The Cultural Ministry Foundation of China(No.17-2009)the Research Foundation of Palace Museum(No.2007-4)
文摘In order to well protect Chinese ancient buildings, aseismic behaviors of Chinese ancient tenon-mortise joints strengthened by carbon fibre reinforced plastic (CFRP) are studied by experiments. Based on the actual size of an ancient building, a wooden frame model with a scale of 1 : 8 of the prototype structure is built considering the swallow-tail type of tenon-mortise connections. Low cyclic reversed loading tests are carried out including three groups of unstrengthened structures and two groups of structures strengthened with CFRP. Based on experimental data, moment-rotation angle hysteretic curves and skeleton curves for each joint are obtained. The energy dissipation capability, stiffness degradation and deformation performance of the joints before and after being strengthened are also analyzed. Results show that after being strengthened with CFRP, the tenon value pulled out of the mortise is reduced; the bending strength and the energy dissipation capabilities of the joint are enhanced; stiffness degradation of the joint is not obvious; and the deformation performance of the joint remains good. Thus, the CFRP has good effects on strengthening the tenon-mortise joints of Chinese ancient buildings.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金supported in part by the Department of Civil Engineering, Semnan University, Iranby the Department of Civil, Architectural, and Environmental Engineering at Missouri University of Science and Technologyby the U.S. National Science Foundation under Award No.CMMI-1030399
文摘This paper presents a new FRP retrofi tting scheme to strengthen local beam-column joints in reinforced concrete(RC) frames.The new retrofi tting scheme was proposed following a preliminary study of four different existing retrofi tting schemes.A numerical simulation was conducted to evaluate the effectiveness of FRP-strengthened reinforced concrete frames by bridging behavior of local joints to the whole structure.Local confi nement effects due to varying retrofi tting schemes in the joints were simulated in the frame model.The seismic behavior factor was used to evaluate the seismic performance of the strengthened RC frames.The results demonstrated that the new proposed retrofi tting scheme was robust and promising,and fi nite element analysis appropriately captured the strength and global ductility of the frame due to upgrading of the local joints.
文摘Beam-Column joints are critical zones in reinforced concrete structures which are most vulnerable to earthquake forces. Hence strengthening beam-column joint is vital to save the structure and its inhabitants in case of seismic forces. Numerous retrofitting works using fibre reinforced polymer (FRP) composites are being undertaken worldwide. This work aims to investigate the effectiveness of strengthening beam-column joints using natural and artificial fibres. In this study, basalt (natural fibres) as monolithic composite (BFRP) and as hybrid composite along with glass (artificial fibres) were used for strengthening of beam-column joints. Totally six specimens were prepared and tested under monotonic loading. Specimen details used were: two control specimen, two specimens for monolithic wrapping and remaining two specimens for hybrid wrapping. The test results were compared with control and rehabilitated specimens. The performance of the treated joints was studied using the following parameters: initial and ultimate cracking loads, energy absorption, deflection ductility and stiffness at ultimate. From the test results, it was found that the hybrid combination of Basalt and Glass FRPs were found to be more effective in the treatment of beam-column joints. The strong column weak beam concept was achieved by failure in beam portion which helped in preventing the catastrophic failure of the entire structure.
文摘Based on the construction property of rolled compacted concrete, three-dimensional finite element relocating mesh method was developed in simulating construction process and computing temperature and stress field. Using this method, the temperature and the thermal stress fields developed in the RCC gravity dam of the Longtan project with or without a longitudinal joint during construction and operation are calculated so as to simulate the construction process. The computation results show that the value of the thermal stresses developed in the dam even, without any longitudinal joint, could meet the design criteria provided the placement temperature is adequately controlled.
基金supported by the Research Program of Henan Federation of Humanities and Social Sciences entitled“The Research of Chinese Higher Education Model”(SKL-2011-2135)
文摘The construction and development of social public management's new normal depend on the scientific transformation of government functionalization orientation and highlighting the role of grassroots public's extensive illustrations on social issues and social conditions.Based on this situation,in the process of public participation mechanism construction,it is necessary to emphasize that the construction of joint elements should be carried out systematically and comprehensively,and to dig deep into the relations and functions of all elements.When the stability of public participation mechanism construction is fully guaranteed,it will extensively supervise and evaluate the development of government's social public management cause,help achieve the final goal of coordinating social development environment and social development elements,ensure that the intrinsic value of public participation mechanism can be thoroughly displayed.