期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于字典学习的低剂量X-ray CT图像去噪 被引量:11
1
作者 朱永成 陈阳 +1 位作者 罗立民 Toumoulin Christine 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期864-868,共5页
介绍了一种基于字典学习的去噪方法,并将其应用于降低低剂量CT图像噪声水平的研究.针对体模图像和病人图像,分别选择低剂量CT图像和正常剂量CT图像作为训练样本,采用K-SVD算法,通过迭代学习构建图像字典;然后,结合正交匹配跟踪算法,实... 介绍了一种基于字典学习的去噪方法,并将其应用于降低低剂量CT图像噪声水平的研究.针对体模图像和病人图像,分别选择低剂量CT图像和正常剂量CT图像作为训练样本,采用K-SVD算法,通过迭代学习构建图像字典;然后,结合正交匹配跟踪算法,实现图像稀疏表示,稀疏成分对应于图像的有用信息,其他成分对应于图像噪声;最后,依据图像的稀疏成分重建图像,达到去除噪声的目的.实验结果表明:字典的大小、稀疏表示的约束条件等参数会显著影响所提算法的去噪结果;相比低剂量CT图像,将正常剂量CT图像作为训练样本可以得到更好的去噪结果;在相同的噪声水平下,所提算法与传统图像去噪算法相比可以更好地去除图像噪声,且保留了图像的细节信息. 展开更多
关键词 K—SVD算法 低剂量CT 字典学习 稀疏表示
下载PDF
头颈癌放疗计划剂量分布的预测方法:基于深度学习的算法 被引量:1
2
作者 滕琳 王斌 冯前进 《南方医科大学学报》 CAS CSCD 北大核心 2023年第6期1010-1016,共7页
目的研究一种基于深度学习的算法,实现头颈癌放疗计划剂量分布的自动预测。方法本文提出一种射线束剂量肢解学习(BDDL)方法,以级联网络作为基本方法,通过肿瘤分割掩膜PTV和预定义的射线束角度等信息,拟合射线束的传送方式(“射线束分割... 目的研究一种基于深度学习的算法,实现头颈癌放疗计划剂量分布的自动预测。方法本文提出一种射线束剂量肢解学习(BDDL)方法,以级联网络作为基本方法,通过肿瘤分割掩膜PTV和预定义的射线束角度等信息,拟合射线束的传送方式(“射线束分割掩膜”)作为卷积神经网络的输入,将预测全局空间剂量分布肢解为多个沿着射线束方向的子剂量分布图。此过程可将一个困难任务肢解为多个简单的子任务,使模型更关注于局部细节特征的提取。通过射线束投票机制将多个子剂量分布融合为一个全局空间剂量分布。另外,引入感兴趣区域ROIs内剂量分布特征和剂量边界图作为网络学习的约束条件,使网络更加关注ROIs和剂量边界区域特征的提取。利用OpenKBP-2020挑战公开的头颈癌放疗计划数据集,获得BDDL方法在剂量分布预测的精确性,并进行消融实验分析。结果本研究提出的方法在量化指标Dose score和DVH score分别取得2.166和1.178(P<0.05),预测精度优于目前最先进方法。与挑战第1名方法相比,本文方法使Dose score和DVH score分别提升26.3%和30%。消融实验结果显示BDDL方法各组成部分的有效性。结论本研究提出的BDDL方法利用了射线束的传送方式和ROIs内剂量分布等先验信息建立剂量预测模型,相比于现有方法是可解释的和可靠的,有望将其应用于临床放疗中。 展开更多
关键词 深度学习 放射治疗计划 头颈癌 射线束剂量肢解学习 剂量体积直方图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部