Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground ...Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground engineering still remains in experience-based method and lacks quantitative analysis.As a connecting component between arch sections,the connection joints have an important influence on the internal force distribution and failure mechanism of support arch.Therefore,a reasonable design of arch joints is the premise of rational support design.Taking Liangjia Coal Mine,a typical deep soft rock mine in China,as research background,this paper fully compared the most widely used joint types of confined concrete arch as analytical objects:flange joints and casing joints.The main failure modes of these two kinds of joints under bending moment are defined.Laboratory and numerical tests are carried out to study the mechanical characteristics of joints.Based on the M-θ curve,the influence law of different design parameters is analyzed,and the design principles of joints are proposed.The research results could provide a theoretical basis for the design and application of confined concrete arch in related projects.展开更多
In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to s...In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to solve the aforementioned problems,the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper.The mechanical model of bearing system of coal pillar and backfilling body is established,by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology.According to the Ritz method in energy variation principle,the elastic solution expression of coal pillar deformation is deduced in roadway backfilling mining technology.Based on elastic-viscoelastic correspondence principle,combining with the burgers rheological constitutive model and Laplace transform theory,the viscoelastic solution expression of coal pillar deformation is obtained in roadway backfilling mining technology.By analyzing the compressive mechanical property of backfilling body,the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained.The example analysis indicates that the time is 140 days.The results can be treated as an important basis for theoretical research and process design in roadway backfilling mining technology.展开更多
The hollow spherical joints welded with circular pipes applied to the National Swimming Center of China are subjected to large bending moments, but the influence of bending moments is not considered in the design equa...The hollow spherical joints welded with circular pipes applied to the National Swimming Center of China are subjected to large bending moments, but the influence of bending moments is not considered in the design equations in Technical Specification for Latticed Shells. Based on the von Mises yield criterion, multilinear isotropic hardening rule and associated flow rule, the elasto-plastic finite element model is put forward to analyze the behavior of the joints, and a calculation method for the joints under bending moments or eccentric loads is proposed. It is shown by the analytical results of joint that the stiffening rib can improve the ultimate bearing capacity by 10% for joints under axial tensile load, by 40% for joints under axial compressive load, and by 50% for joints under bending moment. The unified calculation equations for joints with or without stiffening rib are put forward, which can be applied to calculating the ultimate bearing capacity of the hollow spherical joints with circular pipes under eccentric loads.展开更多
Based on the theory of Fuzzy Mathematics and Expert System, this paper presents the quantitative expression method of bedded and joint bearing rock mass quality "Stratum Quality Index"(SQI for short), and al...Based on the theory of Fuzzy Mathematics and Expert System, this paper presents the quantitative expression method of bedded and joint bearing rock mass quality "Stratum Quality Index"(SQI for short), and also introduces the successful application of the method in estimating stratum movement parameters.展开更多
Objective: To analyze the features of coverage of femoral head at weight-bearing interface of the hip joints in children. Material and Methods: MRI scans of the hips were performed in 95 normal children aged from 1 to...Objective: To analyze the features of coverage of femoral head at weight-bearing interface of the hip joints in children. Material and Methods: MRI scans of the hips were performed in 95 normal children aged from 1 to 8 years. Radial scans of the hip joints were performed using FFE sequence. Review the morphological features of weight-bearing interface of the acetabulum and the femoral head. Total covering angle (TCA), acetabular covering angle (ACA) and labral covering angle (LCA) were measured, inter-group comparison and correlation analysis were done. Result: The acetabulum and the femoral head had congruent articulating surface at each weight-bearing position. There was no statistical TCA difference at each position. Average ACA increased, while average LCA decreased from anterior to posterior. TCA correlated with LCA, ACA negatively correlated with LCA. Conclusion: TCA is a good index in indicating stability of the hip joint. Cartilage ossifies slower at posterior than anterior positions. Cartilage acetabulum and the labrum serve as complementary structures that contribute in total stabilizing of the hip joint in development.展开更多
The present practice in Bangladesh for erection of girders is placing the girder directly on the bearing pad and joining the adjacent two spans in deck slab level by adopting expansion joints, as the bridges are prese...The present practice in Bangladesh for erection of girders is placing the girder directly on the bearing pad and joining the adjacent two spans in deck slab level by adopting expansion joints, as the bridges are presently designed as simply-supported beam bridge. The main disadvantage of this type of bridges is that, the seismic resistance is weak, and under the external force beyond the design range, the bridges are more likely to fall in danger because of failure in girders. Also they have expansion joints for each span, which affects the comfort of driving and the overall integrity of the bridge deck is poor [1]. Therefore, design and construction of the bridges have been revised to establish continuity between girders of two adjacent spans and transform the bridge as simply supported continuous beam bridge [2]. Temporary bearing (sandbox) method is proposed in this paper to solve the system transformation of continuous beam bridges. Design of the temporary bearing is very simple and can be manufactured at site. This method has been proved in construction of Arial Kha Bridge and can be applied for other similar bridges in Bangladesh.展开更多
This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in t...This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.展开更多
A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivatio...A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivation of the formulations. A tri-linear bond-slip constitutive law is used for modeling the tendon-grout interface behavior and debonding of this interface. The bearing plate width is also considered in the analysis. The obtained solutions are in the integral forms and numerical techniques that have been used for evaluation. In the illustrative example given, the major principal stress is compressive in the anchor free zone and compressive stress concentrations of 815 k Pa and 727 k Pa(for the anchor load of 300 k N) are observed under the bearing plate and the bond length proximal end, respectively. However, large values of tensile stresses with the maximum of-434 k Pa are formed at the bond length distal end. The results obtained using the proposed solution are compared very those of numerical method(FEM).展开更多
To examine the seismic performance of a newly fabricated weakened joint at the beam end position,four groups of energy-consuming steel plates with different weakening depths and thicknesses were subjected to horizonta...To examine the seismic performance of a newly fabricated weakened joint at the beam end position,four groups of energy-consuming steel plates with different weakening depths and thicknesses were subjected to horizontal cyclic reciprocating loading tests on beam ends.The tests were designed to evaluate the beams'hysteresis curve,skeleton curve,bearing capacity degradation curve,stiffness degradation curve,and ductility and the nodes'energy dissipation capacity.The test results show that a newly fabricated joint will not undergo brittle damage when the beam-column joint is welded at a displacement of 105 mm.Thus,the hysteresis curve will show an inverse S shape,and an obvious slip phenomenon will occur,which is mainly due to splicing.The diameter of the bolt connecting the slab to the beam flange is slightly smaller than the aperture.Due to the existence of slippage,the skeleton curve has no evident yield point.The joint ductility coefficient is less than 3.0,and the initial rotational stiffness of the joint is also small.The buckling of the splicing panel causes a rapid decrease in the joint bearing capacity.The main approaches,appropriately reducing the weakening depth and increasing the thickness of the splicing plate,can delay the occurrence of buckling and improve the ductility of the joint.展开更多
We experimented on welded hollow spherical joint of a stadium steel roof to investigate the stress and strain distributions on the surface of the joint and determine the ultimate bearing capacity. Then, finite element...We experimented on welded hollow spherical joint of a stadium steel roof to investigate the stress and strain distributions on the surface of the joint and determine the ultimate bearing capacity. Then, finite element analysis was made to experimental results. When the test load was 140% of the design load, the stress at the bottom of the fourth wimble pipe reached the yield point. The experimental results agree with the analytical results well.展开更多
基金This study was funded by The Natural Science Foundation of Shandong Province,China(Nos.ZR2017QEE013,2017GGX30101,2018GGX109001)The Young Scholars Program of Shandong University(2018WLJH76)The Research Fund of The State Key Laboratory of Coal Resources and safe Mining,CUMT(SKLCRSM18KF012).
文摘Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground engineering still remains in experience-based method and lacks quantitative analysis.As a connecting component between arch sections,the connection joints have an important influence on the internal force distribution and failure mechanism of support arch.Therefore,a reasonable design of arch joints is the premise of rational support design.Taking Liangjia Coal Mine,a typical deep soft rock mine in China,as research background,this paper fully compared the most widely used joint types of confined concrete arch as analytical objects:flange joints and casing joints.The main failure modes of these two kinds of joints under bending moment are defined.Laboratory and numerical tests are carried out to study the mechanical characteristics of joints.Based on the M-θ curve,the influence law of different design parameters is analyzed,and the design principles of joints are proposed.The research results could provide a theoretical basis for the design and application of confined concrete arch in related projects.
基金This work was supported by the National Natural Science Foundation of China(51504081,51774110,51508166,U1404527)the Science and Technology Breakthrough Project by Henan Province(162102210221,162102310427)+1 种基金the Foundation for Higher Education Key Research Project by Henan Province(15A440013)the Ph.D.Programs Foundation of Henan Polytechnic University(B2018-65,B2018-4,B2016-67).
文摘In the traditional mining technology,the coal resources trapped beneath surface buildings,railways,and water bodies cannot be mined massively,thereby causing the lower coal recovery and dynamic disasters.In order to solve the aforementioned problems,the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper.The mechanical model of bearing system of coal pillar and backfilling body is established,by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology.According to the Ritz method in energy variation principle,the elastic solution expression of coal pillar deformation is deduced in roadway backfilling mining technology.Based on elastic-viscoelastic correspondence principle,combining with the burgers rheological constitutive model and Laplace transform theory,the viscoelastic solution expression of coal pillar deformation is obtained in roadway backfilling mining technology.By analyzing the compressive mechanical property of backfilling body,the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained.The example analysis indicates that the time is 140 days.The results can be treated as an important basis for theoretical research and process design in roadway backfilling mining technology.
基金National Natural Science Foundation of China (No 50608054)
文摘The hollow spherical joints welded with circular pipes applied to the National Swimming Center of China are subjected to large bending moments, but the influence of bending moments is not considered in the design equations in Technical Specification for Latticed Shells. Based on the von Mises yield criterion, multilinear isotropic hardening rule and associated flow rule, the elasto-plastic finite element model is put forward to analyze the behavior of the joints, and a calculation method for the joints under bending moments or eccentric loads is proposed. It is shown by the analytical results of joint that the stiffening rib can improve the ultimate bearing capacity by 10% for joints under axial tensile load, by 40% for joints under axial compressive load, and by 50% for joints under bending moment. The unified calculation equations for joints with or without stiffening rib are put forward, which can be applied to calculating the ultimate bearing capacity of the hollow spherical joints with circular pipes under eccentric loads.
文摘Based on the theory of Fuzzy Mathematics and Expert System, this paper presents the quantitative expression method of bedded and joint bearing rock mass quality "Stratum Quality Index"(SQI for short), and also introduces the successful application of the method in estimating stratum movement parameters.
文摘Objective: To analyze the features of coverage of femoral head at weight-bearing interface of the hip joints in children. Material and Methods: MRI scans of the hips were performed in 95 normal children aged from 1 to 8 years. Radial scans of the hip joints were performed using FFE sequence. Review the morphological features of weight-bearing interface of the acetabulum and the femoral head. Total covering angle (TCA), acetabular covering angle (ACA) and labral covering angle (LCA) were measured, inter-group comparison and correlation analysis were done. Result: The acetabulum and the femoral head had congruent articulating surface at each weight-bearing position. There was no statistical TCA difference at each position. Average ACA increased, while average LCA decreased from anterior to posterior. TCA correlated with LCA, ACA negatively correlated with LCA. Conclusion: TCA is a good index in indicating stability of the hip joint. Cartilage ossifies slower at posterior than anterior positions. Cartilage acetabulum and the labrum serve as complementary structures that contribute in total stabilizing of the hip joint in development.
文摘The present practice in Bangladesh for erection of girders is placing the girder directly on the bearing pad and joining the adjacent two spans in deck slab level by adopting expansion joints, as the bridges are presently designed as simply-supported beam bridge. The main disadvantage of this type of bridges is that, the seismic resistance is weak, and under the external force beyond the design range, the bridges are more likely to fall in danger because of failure in girders. Also they have expansion joints for each span, which affects the comfort of driving and the overall integrity of the bridge deck is poor [1]. Therefore, design and construction of the bridges have been revised to establish continuity between girders of two adjacent spans and transform the bridge as simply supported continuous beam bridge [2]. Temporary bearing (sandbox) method is proposed in this paper to solve the system transformation of continuous beam bridges. Design of the temporary bearing is very simple and can be manufactured at site. This method has been proved in construction of Arial Kha Bridge and can be applied for other similar bridges in Bangladesh.
文摘This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.
文摘A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivation of the formulations. A tri-linear bond-slip constitutive law is used for modeling the tendon-grout interface behavior and debonding of this interface. The bearing plate width is also considered in the analysis. The obtained solutions are in the integral forms and numerical techniques that have been used for evaluation. In the illustrative example given, the major principal stress is compressive in the anchor free zone and compressive stress concentrations of 815 k Pa and 727 k Pa(for the anchor load of 300 k N) are observed under the bearing plate and the bond length proximal end, respectively. However, large values of tensile stresses with the maximum of-434 k Pa are formed at the bond length distal end. The results obtained using the proposed solution are compared very those of numerical method(FEM).
基金The National Natural Science Foundation of China(No.51968043,51978320).
文摘To examine the seismic performance of a newly fabricated weakened joint at the beam end position,four groups of energy-consuming steel plates with different weakening depths and thicknesses were subjected to horizontal cyclic reciprocating loading tests on beam ends.The tests were designed to evaluate the beams'hysteresis curve,skeleton curve,bearing capacity degradation curve,stiffness degradation curve,and ductility and the nodes'energy dissipation capacity.The test results show that a newly fabricated joint will not undergo brittle damage when the beam-column joint is welded at a displacement of 105 mm.Thus,the hysteresis curve will show an inverse S shape,and an obvious slip phenomenon will occur,which is mainly due to splicing.The diameter of the bolt connecting the slab to the beam flange is slightly smaller than the aperture.Due to the existence of slippage,the skeleton curve has no evident yield point.The joint ductility coefficient is less than 3.0,and the initial rotational stiffness of the joint is also small.The buckling of the splicing panel causes a rapid decrease in the joint bearing capacity.The main approaches,appropriately reducing the weakening depth and increasing the thickness of the splicing plate,can delay the occurrence of buckling and improve the ductility of the joint.
基金The National Natural Science Foundation of China (No.50778077)
文摘We experimented on welded hollow spherical joint of a stadium steel roof to investigate the stress and strain distributions on the surface of the joint and determine the ultimate bearing capacity. Then, finite element analysis was made to experimental results. When the test load was 140% of the design load, the stress at the bottom of the fourth wimble pipe reached the yield point. The experimental results agree with the analytical results well.