期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Influence of Vertical Irregularity on the Seismic Behavior of Base Isolated RC Structures with Lead Rubber Bearings under Pulse-Like Earthquakes
1
作者 Ali Mahamied Amjad AYasin +2 位作者 Yazan Alzubi Jamal Al Adwan Issa Mahamied 《Structural Durability & Health Monitoring》 EI 2023年第6期501-519,共19页
Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literatu... Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior. 展开更多
关键词 Reinforced concrete low-rise structure vertical irregularity the influence of pulse-like earthquake characteristics lead rubber bearing isolators nonlinear response history analysis
下载PDF
Three-dimensional seismic isolation bearing and its application in long span hangars 被引量:13
2
作者 Li Xiongyan Xue Suduo Cai Yancheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期55-65,共11页
Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing ... Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range. 展开更多
关键词 three-dimensional seismic isolation bearing (3DSIB) seismic isolation HANGAR axial force acceleration response
下载PDF
Development of a modified Mooney-Rivlin constitutive model for rubber to investigate the effects of aging and marine corrosion on seismic isolated bearings 被引量:10
3
作者 Zhao Guifeng Ma Yuhong +2 位作者 Li Yanmin Luo Jiarun Du Chang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期815-826,共12页
In this study, aging and marine corrosion tests of a large number of rubber material and rubber bearings have been carried out. The constitutive Mooney-Rivlin model parameters for a rubber isolated bearing have been d... In this study, aging and marine corrosion tests of a large number of rubber material and rubber bearings have been carried out. The constitutive Mooney-Rivlin model parameters for a rubber isolated bearing have been determined. By applying the least-square method to the experimental data, the relationships between the aging time and the marine corrosion time with the constants in the constitutive model for a rubber beating have been derived. Next, the Mooney-Rivlin model has been modified accordingly. Further, using the modified Mooney-Rivlin model and the Abaqus software, the performance of the rubber isolated bearings has been simulated. The simulation results have been compared to the experimental results so as to verify the accuracy of the modified model. The comparison shows that the maximum errors for the vertical and horizontal stiffnesses are 16.8% and 0.49%, respectively. Since these errors are considered acceptable, the accuracy of the modified constitutive model can be considered verified. The results of this study can provide theoretical support for the performance study on rubber isolated bearings under the complex ocean environment and the life-cycle performance evaluation of bridges and other offshore structures. 展开更多
关键词 isolated rubber bearing marine corrosion AGING Mooney-Rivlin model finite element analysis
下载PDF
Experimental and numerical study on hysteretic performance of SMA spring-friction bearings 被引量:2
4
作者 Zhuang Peng Xue Suduo +1 位作者 Nie Pan Wang Wenting 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期597-609,共13页
This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction b... This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction bearing (SFB). The SFB is a sliding-type isolator with SMA devices used for the seismic protection of engineering structures. The principle of operation of the isolation bearing is introduced. In order to explore the possibility of applying SMA elements in passive seismic control devices, large diameter superelastic tension/compression NiTi SMA helical springs used in the SFB isolator were developed. Mechanical experiments of the SMA helical spring were carried out to understand its superelastic characteristics. After that, a series of quasi-static tests on a single SFB isolator prototype were conducted to measure its force-displacement relationships for different loading conditions and study the corresponding variation law of its mechanical performance. The experimental results demonstrate that the SFB exhibits full hysteretic curves, excellent energy dissipation capacity, and moderate recentering ability. Finally, a theoretical model capable of emulating the hysteretic behavior of the SMA-based isolator was then established and implemented in MATLAB software. The comparison of the numerical results with the experimental results shows the efficacy of the proposed model for simulating the response of the SFB. 展开更多
关键词 sliding isolation bearing SMA helical spring hysteretic performance quasi-static test theoretical model
下载PDF
Study of the seismic performance of expansion double spherical seismic isolation bearings for continuous girder bridges 被引量:11
5
作者 Peng, Tianbo Yu, Xuntao +1 位作者 Wang, Zhennan Han, Lei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期163-172,共10页
The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipat... The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipation and horizontal displacement capacity and has been successfully integrated into the seismic design of several important engineering projects in China. It is envisioned to be used as a substitute for ordinary expansion bearings in continuous girder bridges to distribute the longitudinal earthquake action among all the piers. Its development, configuration and working mechanism are introduced first. The test method and the seismic performance of an expansion DSSI bearing are then briefly described. A theoretical analysis followed by a numerical analysis for an actual four-span continuous girder bridge are provided as an example, and it is concluded that the expansion DSSI bearing can be integrated into the seismic design of continuous girder bridges. 展开更多
关键词 double spherical seismic isolation (DSSI) bearing seismic isolation seismic performance continuous girder bridge
下载PDF
Seismic Response Analysis of Steel Structure Isolation System Under Long-Period Seismic Motion
6
作者 Long Yu Mei Sheng +1 位作者 Huan Feng Jianan Hu 《Journal of Architectural Research and Development》 2024年第3期147-155,共9页
To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were establis... To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings. 展开更多
关键词 Long-period seismic motion Steel structure Mid-story isolation structure Isolation bearing Seismic performance
下载PDF
Study on the Influence of Aspect Ratio on the Seismic Response and Overturning Resistance of a New Staggered Story Isolated Structure
7
作者 Tiange Zhao Dewen Liu 《World Journal of Engineering and Technology》 2024年第3期617-634,共18页
The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif... The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases. 展开更多
关键词 Aspect Ratio A New Staggered Story Isolated Structure Seismic Response Overturning Resistance Ratio Isolated bearing
下载PDF
Seismic Fragility of Approach Bridge for the Large Port Terminals
8
作者 LIU Xinyue 《International English Education Research》 2016年第4期48-50,共3页
In order to study the seismic performance of typical approach bridge for port project, the seismic vulnerability model was created. 100 of the earthquake motion records are selected from the database of Pacific Earthq... In order to study the seismic performance of typical approach bridge for port project, the seismic vulnerability model was created. 100 of the earthquake motion records are selected from the database of Pacific Earthquake Research Centre, In order to obtain the maximum responses of structure dynamic response, the model was calculated by using non-linear time history analysis. Then reliability analysis method was used to generate the fragility curves of bridge components. And compared two kinds of bearing made differences to structure' s vulnerability. Researches show that bearing is easy to breakdown with earthquake action. Isolation bearing has good effect, and significantly reduces failure probability, fmaUy the fragility curves obtained can be used to evaluate the seismic performance of continuous beam bridge for port project, and provide the basis for seismic design of bridges for port project. 展开更多
关键词 Port project Approach bridge Seismic vulnerability Isolation bearing
下载PDF
Design and experimental verification of a new multi-functional bridge seismic isolation bearing 被引量:8
9
作者 Chen-xi XING Hao WANG +1 位作者 Ai-qun LI Ji-rong WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第12期904-914,共11页
A new multi-functional bridge seismic isolation bearing(MFBSIB) is designed and its mechanical model is developed in this paper.Combining an upper sliding device and a lower energy dispassion isolation device effectiv... A new multi-functional bridge seismic isolation bearing(MFBSIB) is designed and its mechanical model is developed in this paper.Combining an upper sliding device and a lower energy dispassion isolation device effectively,the new MFBSIB can adjust the deformation caused by temperature,vehicle breaks,and concrete creep,etc.,in addition to dissipating energy.The switch of 'slide-isolation' is achieved and the efficiency of both upper and lower parts is validated through experiment with a model.The shear performance curve established in this paper is verified to be efficient in describing the mechanical characteristics of the bearing through experiment.It is proved through both numerical calculation and experimental analysis that the new MFBSIB is endowed with enough vertical rigidity,good energy dissipation ability,stable overall performance,and good realization in expected goals.Its performance is slightly influenced by shear stress,while affected by vertical pressure,loading frequency,slide limit,etc.,diversely.The results could provide reference for study and application of the new MFBSIB. 展开更多
关键词 Seismic isolation bearing Sliding device Finite element analysis Model experiment BRIDGE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部