期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Establishment of Dynamic Model for Axle Box Bearing of High-Speed Trains Under Variable Speed Conditions 被引量:5
1
作者 Yongqiang Liu Baosen Wang +1 位作者 Bin Zhang Shaopu Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期340-351,共12页
In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and... In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and the compensation balance excitation caused by the rotor mass eccentricity considered.The angle iteration method is used to overcome the challenge posed by the inability to determine the roller space position during bearing rotation.The simulation results show that the model accurately describes the dynamics of bearings under varying speed profles that contain acceleration,deceleration,and speed oscillation stages.The order ratio spectrum of the bearing vibration signal indicates that both the single and multiple frequencies in the simulation results are consistent with the theoretical results.Experiments on bearings with outer and inner ring faults under various operating conditions are performed to verify the developed model. 展开更多
关键词 Variable speed conditions High-speed train bearing model Angle iteration Order ratio spectrum
下载PDF
PRINCIPLES AND PARAMETER DESIGN FOR AC-DC THREE-DEGREE FREEDOM HYBRID MAGNETIC BEARINGS 被引量:15
2
作者 ZHU Huangqiu XIE Zhiyi ZHU Dehong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期534-539,共6页
To simplify the mechanical structure, decrease the overall system size of the 3-degree freedom axial-radial magnetic bearings and reduce the manufacturing costs as well as operating costs, an innovated AC-DC 3-degree ... To simplify the mechanical structure, decrease the overall system size of the 3-degree freedom axial-radial magnetic bearings and reduce the manufacturing costs as well as operating costs, an innovated AC-DC 3-degree freedom hybrid magnetic bearing is proposed, which is driven by a DC amplifier in axial direction and a 3-phase power converter in radial directions respectively, and the axial and radial bias magnetic fluxes are provided with a common radial polarized permanent magnet ring. The principle producing magnetic suspension forces is introduced. By using equivalent magnetic circuit method, the calculation formulas of magnetic suspension forces and the mathematics models of the system are deduced. Nonlinearities of suspension forces and cross coupling between different degree freedoms are studied further by calculating the suspension forces at different displacements and control currents to validate the feasibility of the mathematics model. Then based on the mathematics models of the bearing, a control method of this novel bearing is designed. Lastly, the methods on parameter design and calculations of the bearing are presented, and an applicable prototype is simulated to analyze the magnetic path by using finite element analysis. The theory analysis and simulation results have shown that this magnetic bearing incorporates the merits of 3-phase AC drive, permanent magnet flux biased and axial-radial combined control, and reduces overall system size and has higher efficiency and lower cost, This innovated magnetic bearing has a wide application in super-speed and super-precision numerical control machine tools, bearingless motors, high-speed flywheels, satellites, etc. 展开更多
关键词 Hybridmagnetic bearing Equivalent flux path Mathematics model NonlinearityFinite element analysis
下载PDF
Stresses induced by post-tensioned anchor in jointed rock mass 被引量:9
3
作者 Alan Showkati Parviz Maarefvand Hossein Hassani 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1463-1476,共14页
A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivatio... A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivation of the formulations. A tri-linear bond-slip constitutive law is used for modeling the tendon-grout interface behavior and debonding of this interface. The bearing plate width is also considered in the analysis. The obtained solutions are in the integral forms and numerical techniques that have been used for evaluation. In the illustrative example given, the major principal stress is compressive in the anchor free zone and compressive stress concentrations of 815 k Pa and 727 k Pa(for the anchor load of 300 k N) are observed under the bearing plate and the bond length proximal end, respectively. However, large values of tensile stresses with the maximum of-434 k Pa are formed at the bond length distal end. The results obtained using the proposed solution are compared very those of numerical method(FEM). 展开更多
关键词 post-tensioned anchor jointed rock stress distribution analytical solution tri-linear bond-slip model bond length bearing plate
下载PDF
A numerical test method of California bearing ratio on graded crushed rocks using particle flow modeling 被引量:2
4
作者 Yingjun Jiang Louis Ngai Yuen Wong Jiaolong Ren 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第2期107-115,共9页
In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed fo... In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR) test on GGRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical results suggest that the influences of the loading rate and Poisson's ratio on the CBR numerical test results are not significant. As such, a loading rate of 1.0-3.0 mm/min, a piston diameter of 5 cm, a specimen height of 15 cm and a specimen diameter of 15 cm are adopted for the CBR numerical test. The numerical results reveal that the GBR values increase with the friction coefficient at the contact and shear modulus of the rocks, while the influence of Poisson's ratio on the GBR values is insignificant. The close agreement between the CBR numerical results and experimental results suggests that the numerical simulation of the CBR values is promising to help assess the mechanical properties of GGRs and to optimize the grading design. Be- sides, the numerical study can provide useful insights on the mesoscopic mechanism. 展开更多
关键词 Graded crushed rocks Particle flow modeling California bearing ratio Numerical test Micro-mechanical parametersMesoscopic mechanism
原文传递
Development and stability analysis of a high-speed train bearing system under variable speed conditions 被引量:2
5
作者 Baosen Wang Yongqiang Liu +1 位作者 Bin Zhang Shaopu Yang 《International Journal of Mechanical System Dynamics》 2022年第4期352-362,共11页
During a high-speed train operation,the train speed changes frequently,resulting in motion change as a function of time.A dynamic model of a double‐row tapered roller bearing system of a high-speed train under variab... During a high-speed train operation,the train speed changes frequently,resulting in motion change as a function of time.A dynamic model of a double‐row tapered roller bearing system of a high-speed train under variable speed conditions is developed.The model takes into consideration the structural characteristics of one outer ring and two inner rings of the train bearing.The angle iteration method is used to determine the rotation angle of the roller within any time period,solving the difficult problem of determining the location of the roller.The outer ring and inner ring faults are captured by the model,and the model response is obtained under variable speed conditions.Experiments are carried out under two fault conditions to validate the model results.The simulation results are found to be in good agreement with the results of the formula,and the errors between the simulation results and the experimental results when the bearing has outer and inner ring faults are found to be,respectively,5.97% and 2.59%,which demonstrates the effectiveness of the model.The influence of outer ring and inner ring faults on system stability is analyzed quantitatively using the Lempel–Ziv complexity.The results show that for low train acceleration,the inner ring fault has a more significant effect on the system stability,while for high acceleration,the outer ring fault has a more significant effect.However,when the train acceleration changes,the outer ring has a greater influence.In practice,train acceleration is usually small and does not frequently change in one operation cycle.Therefore,the inner ring fault of the bearing deserves more attention. 展开更多
关键词 high-speed train bearing model variable speed conditions stability analysis Lempel-Ziv complexity
原文传递
Comprehensive experimental database and analysis of circular concrete-filled double-skin tube stub columns:A review
6
作者 Hongyuan TANG Hongfei TAN +2 位作者 Sisi GE Jieyu QIN Yuzhuo WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第12期1830-1848,共19页
A concrete-filled double-skin tube(CFDST)is a new type of composite material.Experimental studies have been conducted to investigate the axial compression behavior of CFDST members for approximately 30 years.This pape... A concrete-filled double-skin tube(CFDST)is a new type of composite material.Experimental studies have been conducted to investigate the axial compression behavior of CFDST members for approximately 30 years.This paper provides a review of the status of axial compression bearing capacity tests conducted on circular CFDST stub columns as well as a summary of test data for 165 circular CFDST stub columns reported in 22 papers.A relatively complete high-quality test database is established.Based on this database,the main factors affecting the axial compression bearing capacity of the CFDST stub columns are analyzed.The prediction accuracy and robustness of an existing theoretical prediction model,which is a data-driven model,are evaluated,and a numerical simulation of the axial compression bearing capacity of the CFDST stub columns is conducted.In addition,the differences between the basic theory and experimental results of various models are compared,and the possible sources of prediction errors are analyzed.The current model for predicting the axial compression capacity of CFDST stub columns cannot simultaneously satisfy the requirements of high accuracy and confidence,and the stress independency assumption introduced in the test is not valid.The main error source in the theoretical prediction model is the non-simultaneous consideration of the effects of the void ratio and inner steel tube. 展开更多
关键词 CFDST bearing capacity model confined concrete model test database
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部