Researches on the processing method of ceramic bearing ball,the formation and propagation of defects in the manufacturing and the nondestructive evaluation(NDE) are summarized in this paper.The key for successful proc...Researches on the processing method of ceramic bearing ball,the formation and propagation of defects in the manufacturing and the nondestructive evaluation(NDE) are summarized in this paper.The key for successful processing of high strength ceramic balls is to avoid producing related defects.Many investigations show that the material microstructures,defects as well as mechanical processing parameters influence the final surface quality significantly.Most of NDE technologies,such as radiation,ultrasonic,dye-penetration and laser scatter,have been studied for ceramic bearing ball surface inspection around the world.So far,the difficulties to develop the perfect NDE system for ceramic bearing balls,which are caused by the defect variety and surface unfolding,have not been overcome yet.展开更多
This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recen...This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.展开更多
In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a se...In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt%SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ce-ramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.展开更多
基金the National Nature Science Foundation of China (50275031)
文摘Researches on the processing method of ceramic bearing ball,the formation and propagation of defects in the manufacturing and the nondestructive evaluation(NDE) are summarized in this paper.The key for successful processing of high strength ceramic balls is to avoid producing related defects.Many investigations show that the material microstructures,defects as well as mechanical processing parameters influence the final surface quality significantly.Most of NDE technologies,such as radiation,ultrasonic,dye-penetration and laser scatter,have been studied for ceramic bearing ball surface inspection around the world.So far,the difficulties to develop the perfect NDE system for ceramic bearing balls,which are caused by the defect variety and surface unfolding,have not been overcome yet.
文摘This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.
基金financially supported by the International S&T Cooperation Program of China(No.2010DFR50360)
文摘In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt%SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ce-ramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.