Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propo...Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.展开更多
Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.How...Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.展开更多
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear...The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.展开更多
In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The pape...In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.展开更多
The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The ...The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future.展开更多
This paper deals with an open-loop characteristic of a magnetically levitated system including flux feedback. In order to design a controller to obtain a good disturbance rejection and to be insensitive to parameter v...This paper deals with an open-loop characteristic of a magnetically levitated system including flux feedback. In order to design a controller to obtain a good disturbance rejection and to be insensitive to parameter variations, it might be useful to employ a flux feedback loop. The air gap flux which can be sensed by a proper sensor has linear relationship with respect to the change of the current and the air gap. This linear property decreases the inherent nonlinearity of the magnetic suspension system that is caused by the coupling between the electrical actuator and the mechanical plant. Simulation results achieved from a multi-degree-of-freedom numerical model show that the flux feedback loop makes an improvement of the performance of the magnetic suspension system against the load variations.展开更多
针对机器视觉轴承内圈侧面复杂形状尺寸检测精度低的问题,提出根据检测目标建立小面积感兴趣区域(Region of Interest,ROI)的自适应选取方法和基于Zernike矩的ROI亚像素级边缘提取方法,大幅提升了轴承内圈尺寸的检测精度。首先分别拍摄...针对机器视觉轴承内圈侧面复杂形状尺寸检测精度低的问题,提出根据检测目标建立小面积感兴趣区域(Region of Interest,ROI)的自适应选取方法和基于Zernike矩的ROI亚像素级边缘提取方法,大幅提升了轴承内圈尺寸的检测精度。首先分别拍摄轴承内圈左侧与右侧轮廓图像,对图像进行预处理。在此基础上,通过角点检测融合像素扫描的方法实现自适应ROI选取,解决了因轴承内圈移动引起的小面积ROI边缘误判问题;使用Canny算子提取ROI的像素级边缘,再用改进的Zernike矩算法得到亚像素级边缘。最后,分别对ROI中提取的边缘进行最小二乘圆拟合和直线拟合,根据像素当量与视场间隔将图像中各尺寸转换为轴承内圈实际尺寸。实验结果表明:所提方法测量的标准不确定度低于0.005 mm,满足轴承尺寸高精度检测的要求,对于实现轴承检测的自动化有实际意义。展开更多
基金supported by the Anhui Provincial Key Research and Development Project(202104a07020005)the University Synergy Innovation Program of Anhui Province(GXXT-2022-019)+1 种基金the Institute of Energy,Hefei Comprehensive National Science Center under Grant No.21KZS217Scientific Research Foundation for High-Level Talents of Anhui University of Science and Technology(13210024).
文摘Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.
文摘Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.
文摘The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.
文摘In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.
基金The Natural Science Foundation of Jiangsu Province,China(No.BK20200470)China Postdoctoral Science Foundation(No.2021M691595)Innovation and Entrepreneurship Plan Talent Program of Jiangsu Province(No.AD99002).
文摘The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future.
文摘This paper deals with an open-loop characteristic of a magnetically levitated system including flux feedback. In order to design a controller to obtain a good disturbance rejection and to be insensitive to parameter variations, it might be useful to employ a flux feedback loop. The air gap flux which can be sensed by a proper sensor has linear relationship with respect to the change of the current and the air gap. This linear property decreases the inherent nonlinearity of the magnetic suspension system that is caused by the coupling between the electrical actuator and the mechanical plant. Simulation results achieved from a multi-degree-of-freedom numerical model show that the flux feedback loop makes an improvement of the performance of the magnetic suspension system against the load variations.
文摘针对机器视觉轴承内圈侧面复杂形状尺寸检测精度低的问题,提出根据检测目标建立小面积感兴趣区域(Region of Interest,ROI)的自适应选取方法和基于Zernike矩的ROI亚像素级边缘提取方法,大幅提升了轴承内圈尺寸的检测精度。首先分别拍摄轴承内圈左侧与右侧轮廓图像,对图像进行预处理。在此基础上,通过角点检测融合像素扫描的方法实现自适应ROI选取,解决了因轴承内圈移动引起的小面积ROI边缘误判问题;使用Canny算子提取ROI的像素级边缘,再用改进的Zernike矩算法得到亚像素级边缘。最后,分别对ROI中提取的边缘进行最小二乘圆拟合和直线拟合,根据像素当量与视场间隔将图像中各尺寸转换为轴承内圈实际尺寸。实验结果表明:所提方法测量的标准不确定度低于0.005 mm,满足轴承尺寸高精度检测的要求,对于实现轴承检测的自动化有实际意义。