Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propo...Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.展开更多
The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The ...The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future.展开更多
This paper deals with an open-loop characteristic of a magnetically levitated system including flux feedback. In order to design a controller to obtain a good disturbance rejection and to be insensitive to parameter v...This paper deals with an open-loop characteristic of a magnetically levitated system including flux feedback. In order to design a controller to obtain a good disturbance rejection and to be insensitive to parameter variations, it might be useful to employ a flux feedback loop. The air gap flux which can be sensed by a proper sensor has linear relationship with respect to the change of the current and the air gap. This linear property decreases the inherent nonlinearity of the magnetic suspension system that is caused by the coupling between the electrical actuator and the mechanical plant. Simulation results achieved from a multi-degree-of-freedom numerical model show that the flux feedback loop makes an improvement of the performance of the magnetic suspension system against the load variations.展开更多
Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-pa...Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.展开更多
Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.How...Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.展开更多
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear...The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.展开更多
In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The pape...In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.展开更多
Neural Machine Translation(NMT)based system is an important technology for translation applications.However,there is plenty of rooms for the improvement of NMT.In the process of NMT,traditional word vector cannot dist...Neural Machine Translation(NMT)based system is an important technology for translation applications.However,there is plenty of rooms for the improvement of NMT.In the process of NMT,traditional word vector cannot distinguish the same words under different parts of speech(POS).Aiming to alleviate this problem,this paper proposed a new word vector training method based on POS feature.It can efficiently improve the quality of translation by adding POS feature to the training process of word vectors.In the experiments,we conducted extensive experiments to evaluate our methods.The experimental result shows that the proposed method is beneficial to improve the quality of translation from English into Chinese.展开更多
High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by...High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by aeronautical manufacturing enterprises is declining day by day, while the new generation of aircraft structural parts <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> developing towards integration, large-scale, complexity, thin-walled and lightweight. It is very easy to produce dimension overshoot and surface quality defects due to unstable processing technology. The machining accuracy of aircraft structural parts is also affected by complex factors such as cutting load, cutting stability, tool error, workpiece deformation, fixture deformation, etc. Because of the complexity of structure and characteristics of Aeronautical Structural parts, the consistency and stability of cutting process are poor. It is easy to cause machining accuracy problems due to tool wear, breakage and cutting chatter. Relevant scholars have carried out a lot of basic research on NC machining accuracy control and achieved fruitful results, but the research on NC machining accuracy control of Aeronautical structural parts is still less. This paper elaborates from three aspects: error modeling method of NC machine tools, error compensation method, prediction and control of machining accuracy, and combines the characteristics of Aeronautical Structural parts, the development trend and demand of NC machining accuracy control technology are put forward.</span>展开更多
This paper deals with part sequencing and optimal robot moves sequence in 2-machine robotic cells according to Petri net graph. We have assumed that the robotic cell is capable of producing same and different parts. W...This paper deals with part sequencing and optimal robot moves sequence in 2-machine robotic cells according to Petri net graph. We have assumed that the robotic cell is capable of producing same and different parts. We have considered a new motion cycle for robot moves sequence which is the development of existing motion cycles in 2-machine robotic cells. The main goal of this study is to minimize the cycle time by determining the optimal part sequencing and robot moves sequence in the robotic cell. So, we have proposed a model based on Petri network.展开更多
Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines ...Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines is addressed by a proposed Probability Least Squares Support Vector Classification Machine (PLSSVCM). Samples that cannot be definitely determined as belonging to one class will be assigned to a class by the PLSSVCM based on a probability value. This gives the classification results both a qualitative explanation and a quantitative evaluation. Simulation results of a fault diagnosis show that the correct rate of the PLSSVCM is 100%. Even though samples are noisy, the PLSSVCM still can effectively realize multi-class fault diagnosis of a roller bearing. The generalization property of the PLSSVCM is better than that of a neural network and a LSSVCM.展开更多
In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-wa...In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-water heat exchange system is used for cooling the spindle motor.The spindle is supported by Si_4N_3 ceramic ball angular contact bearings. An oil-air lubricator is used to lubricate and cool the spindle bearings.Some special structures are taken for balancing the spindle.展开更多
For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation proce...For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation process,the change process of residual stress within aluminum alloy pre-stretching plate is researched,and the distribution law of residual stress is indirectly obtained by delamination measurement methods,so the effect of internal residual stress on machining distortion is considered before finite element simulation. Considering the coupling effects of residual stress,dynamic milling force and clamping force on machining distortion,a threedimensional dynamic finite element simulation model is established,and the whole cutting process is simulated from the blank material to finished product,a novel prediction method is proposed,which can availably predict the machining distortion accurately. The machining distortion state of the thin-walled part is achieved at different processing steps,the machining distortion of the thin-walled part is detected with three coordinate measuring machine tools,show that the simulation results are in good agreement with experimental data.展开更多
Multiple faults are easily confused with single faults.In order to identify multiple faults more accurately,a highly efficient learning method is proposed based on a double parallel two-hidden-layer extreme learning m...Multiple faults are easily confused with single faults.In order to identify multiple faults more accurately,a highly efficient learning method is proposed based on a double parallel two-hidden-layer extreme learning machine,called DPTELM.The DPT-ELM method is a variant of an extreme learning machine(ELM).There are some issues with ELM.First,achieving a high accuracy requires too many hidden nodes;second,the direct connection between the input layer and the output layer is ignored.Accordingly,to deal with the above-mentioned problems,DPT-ELM extends the single-hidden-layer ELM to a two-hidden-layer ELM,which can achieve a desired performance with fewer hidden nodes.In addition,a direct connection is built between the input layer and the output layer.Since the input layer weights and the thresholds of the two hidden layers are determined randomly,this simplifies the improved model and shortens the calculation time.Additionally,to improve the signal to noise ratio(SNR),an adaptive waveform decomposition(AWD)algorithm is used to denoise the vibration signal.Then,the denoised signal is used to extract the eigenvalues by the time-domain and frequency-domain methods.Finally,the eigenvalues are input to the DPT-ELM classifier.In this paper,two groups of rolling bearing data at different speeds,which were collected from a real experimental platform,are used to test the method.Each set of data includes three single fault states,two complex fault states and a healthy state.The experimental results demonstrate that the DPT-ELM method achieves fast learning speed and a high accuracy.Moreover,based on 10-fold cross-validation,it proves to be an effective method to improve the accuracy with fewer hidden nodes.展开更多
In the eastern part of China there had occurred large\|scale gold mineralization during the Mesozoic, resulting in a large number of important gold ore\|concentrated areas. In this paper we have selected some isotope ...In the eastern part of China there had occurred large\|scale gold mineralization during the Mesozoic, resulting in a large number of important gold ore\|concentrated areas. In this paper we have selected some isotope data (including four gold deposits previously studied and two gold deposits in this work) of Au\|bearing quartz veins of the representative gold deposits in six important gold ore\|concentrated areas in the periphery of the North China Platform and calculated their metallogenic ages using the method of Ludwig (2.90 version). The results show that the representative gold deposits in the six gold ore\|concentrated areas were formed during the Mesozoic.展开更多
A cylindrical coordinate measuring machine for the detection of large-size rotational parts is introduced. The measuring machine can simultaneously measure the geometrical dimensions, form and position errors of the i...A cylindrical coordinate measuring machine for the detection of large-size rotational parts is introduced. The measuring machine can simultaneously measure the geometrical dimensions, form and position errors of the inner and outer surfaces. Since the maximum length of the workpiece can reach 2 000 mm , it is difficult to be clamped and adjusted and easy to produce clamping error. The eccentricity can be up to 1.5 mm, which has an interaction effect with the probe mounting offset. We mainly study the probe offset of the measuring machine and the influence of the workpiece clamping error on the measurement. A method of controlling the offset of the measuring probe is proposed. The effect of the clamping error is eliminated through the space coordinate transformation of the workpiece axis, and the axis is fitted by the least square method. Finally, a common fixture can be realized to meet the clamping requirements of the workpiece.展开更多
Rotary machines are widely used in various applications. A reliable machinery fault detection technique is critically needed in industries to prevent the machinery system’s performance degradation, malfunction, or ev...Rotary machines are widely used in various applications. A reliable machinery fault detection technique is critically needed in industries to prevent the machinery system’s performance degradation, malfunction, or even catastrophic failures. The challenge for reliable fault diagnosis is related to the analysis of non-stationary features. In this paper, a wavelet spectrum (WS) technique is proposed to tackle the challenge of feature extraction from these non-stationary signatures;this work will focus on fault detection in rolling element bearings. The vibration signatures are first analyzed by a wavelet transform to demodulate representative features;the periodic features are then enhanced by cross-correlating the resulting wavelet coefficient functions over several contributive neighboring wavelet bands. The effectiveness of the proposed technique is examined by experimental tests corresponding to different bearing conditions. Test results show that the developed WS technique is an effective signal processing approach for non-stationary feature extraction and analysis, and it can be applied effectively for bearing fault detection.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
基金supported by the Anhui Provincial Key Research and Development Project(202104a07020005)the University Synergy Innovation Program of Anhui Province(GXXT-2022-019)+1 种基金the Institute of Energy,Hefei Comprehensive National Science Center under Grant No.21KZS217Scientific Research Foundation for High-Level Talents of Anhui University of Science and Technology(13210024).
文摘Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.
基金The Natural Science Foundation of Jiangsu Province,China(No.BK20200470)China Postdoctoral Science Foundation(No.2021M691595)Innovation and Entrepreneurship Plan Talent Program of Jiangsu Province(No.AD99002).
文摘The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future.
文摘This paper deals with an open-loop characteristic of a magnetically levitated system including flux feedback. In order to design a controller to obtain a good disturbance rejection and to be insensitive to parameter variations, it might be useful to employ a flux feedback loop. The air gap flux which can be sensed by a proper sensor has linear relationship with respect to the change of the current and the air gap. This linear property decreases the inherent nonlinearity of the magnetic suspension system that is caused by the coupling between the electrical actuator and the mechanical plant. Simulation results achieved from a multi-degree-of-freedom numerical model show that the flux feedback loop makes an improvement of the performance of the magnetic suspension system against the load variations.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575087,51205041)Science Fund for Creative Research Groups(Grant No.51321004)+1 种基金Basic Research Foundation of Key Laboratory of Liaoning Educational Committee,China(Grant No.LZ2014003)Research Project of Ministry of Education of China(Grant No.113018A)
文摘Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.
文摘Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes.
文摘The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.
文摘In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.
基金This work is supported by the National Natural Science Foundation of China(61872231,61701297).
文摘Neural Machine Translation(NMT)based system is an important technology for translation applications.However,there is plenty of rooms for the improvement of NMT.In the process of NMT,traditional word vector cannot distinguish the same words under different parts of speech(POS).Aiming to alleviate this problem,this paper proposed a new word vector training method based on POS feature.It can efficiently improve the quality of translation by adding POS feature to the training process of word vectors.In the experiments,we conducted extensive experiments to evaluate our methods.The experimental result shows that the proposed method is beneficial to improve the quality of translation from English into Chinese.
文摘High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by aeronautical manufacturing enterprises is declining day by day, while the new generation of aircraft structural parts <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> developing towards integration, large-scale, complexity, thin-walled and lightweight. It is very easy to produce dimension overshoot and surface quality defects due to unstable processing technology. The machining accuracy of aircraft structural parts is also affected by complex factors such as cutting load, cutting stability, tool error, workpiece deformation, fixture deformation, etc. Because of the complexity of structure and characteristics of Aeronautical Structural parts, the consistency and stability of cutting process are poor. It is easy to cause machining accuracy problems due to tool wear, breakage and cutting chatter. Relevant scholars have carried out a lot of basic research on NC machining accuracy control and achieved fruitful results, but the research on NC machining accuracy control of Aeronautical structural parts is still less. This paper elaborates from three aspects: error modeling method of NC machine tools, error compensation method, prediction and control of machining accuracy, and combines the characteristics of Aeronautical Structural parts, the development trend and demand of NC machining accuracy control technology are put forward.</span>
文摘This paper deals with part sequencing and optimal robot moves sequence in 2-machine robotic cells according to Petri net graph. We have assumed that the robotic cell is capable of producing same and different parts. We have considered a new motion cycle for robot moves sequence which is the development of existing motion cycles in 2-machine robotic cells. The main goal of this study is to minimize the cycle time by determining the optimal part sequencing and robot moves sequence in the robotic cell. So, we have proposed a model based on Petri network.
基金supported by the Program for New Century Excellent Talents in University (NoNCET- 08-0836)the National Natural Science Foundation of China (Nos60804022, 60974050 and 61072094)+1 种基金the Fok Ying-Tung Education Foundation for Young Teachers (No121066)by the Natural Science Foundation of Jiangsu Province (No.BK2008126)
文摘Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines is addressed by a proposed Probability Least Squares Support Vector Classification Machine (PLSSVCM). Samples that cannot be definitely determined as belonging to one class will be assigned to a class by the PLSSVCM based on a probability value. This gives the classification results both a qualitative explanation and a quantitative evaluation. Simulation results of a fault diagnosis show that the correct rate of the PLSSVCM is 100%. Even though samples are noisy, the PLSSVCM still can effectively realize multi-class fault diagnosis of a roller bearing. The generalization property of the PLSSVCM is better than that of a neural network and a LSSVCM.
基金This project is supported by National Natural Science Foundation of China(59575063), the Provincial Natural Science Foundation o
文摘In order to realize high speed machining,the special requirements for the transmission and sturctrue of CNC machine tool have to be satisfied.A high speed spindle unit driven by a built-in motor is developed.An oil-water heat exchange system is used for cooling the spindle motor.The spindle is supported by Si_4N_3 ceramic ball angular contact bearings. An oil-air lubricator is used to lubricate and cool the spindle bearings.Some special structures are taken for balancing the spindle.
基金Sponsored by the National Natural Science Foundation of China(Grant No.,51475106)NSAF(Grant No.U1230110)
文摘For the problems of machining distortion and the low accepted product during milling process of aluminum alloy thin-walled part,this paper starts from the analysis of initial stress state in material preparation process,the change process of residual stress within aluminum alloy pre-stretching plate is researched,and the distribution law of residual stress is indirectly obtained by delamination measurement methods,so the effect of internal residual stress on machining distortion is considered before finite element simulation. Considering the coupling effects of residual stress,dynamic milling force and clamping force on machining distortion,a threedimensional dynamic finite element simulation model is established,and the whole cutting process is simulated from the blank material to finished product,a novel prediction method is proposed,which can availably predict the machining distortion accurately. The machining distortion state of the thin-walled part is achieved at different processing steps,the machining distortion of the thin-walled part is detected with three coordinate measuring machine tools,show that the simulation results are in good agreement with experimental data.
基金supported by National Natural Science Foundation of China(51675035/51375037)
文摘Multiple faults are easily confused with single faults.In order to identify multiple faults more accurately,a highly efficient learning method is proposed based on a double parallel two-hidden-layer extreme learning machine,called DPTELM.The DPT-ELM method is a variant of an extreme learning machine(ELM).There are some issues with ELM.First,achieving a high accuracy requires too many hidden nodes;second,the direct connection between the input layer and the output layer is ignored.Accordingly,to deal with the above-mentioned problems,DPT-ELM extends the single-hidden-layer ELM to a two-hidden-layer ELM,which can achieve a desired performance with fewer hidden nodes.In addition,a direct connection is built between the input layer and the output layer.Since the input layer weights and the thresholds of the two hidden layers are determined randomly,this simplifies the improved model and shortens the calculation time.Additionally,to improve the signal to noise ratio(SNR),an adaptive waveform decomposition(AWD)algorithm is used to denoise the vibration signal.Then,the denoised signal is used to extract the eigenvalues by the time-domain and frequency-domain methods.Finally,the eigenvalues are input to the DPT-ELM classifier.In this paper,two groups of rolling bearing data at different speeds,which were collected from a real experimental platform,are used to test the method.Each set of data includes three single fault states,two complex fault states and a healthy state.The experimental results demonstrate that the DPT-ELM method achieves fast learning speed and a high accuracy.Moreover,based on 10-fold cross-validation,it proves to be an effective method to improve the accuracy with fewer hidden nodes.
基金This research project was granted jointly by the State Key Program (95pre39)sponsored by the China National Science and Tech nology Departmentthe State Out standing Young Scientists Foundation (GrantNo .4 96 2 5 3 0 4 ) and the Open Lab.of Ore Depo
文摘In the eastern part of China there had occurred large\|scale gold mineralization during the Mesozoic, resulting in a large number of important gold ore\|concentrated areas. In this paper we have selected some isotope data (including four gold deposits previously studied and two gold deposits in this work) of Au\|bearing quartz veins of the representative gold deposits in six important gold ore\|concentrated areas in the periphery of the North China Platform and calculated their metallogenic ages using the method of Ludwig (2.90 version). The results show that the representative gold deposits in the six gold ore\|concentrated areas were formed during the Mesozoic.
基金National Natural Science Foundation of China(No.51375338)National Key R&D Program of China(No.2017YFF0108102)
文摘A cylindrical coordinate measuring machine for the detection of large-size rotational parts is introduced. The measuring machine can simultaneously measure the geometrical dimensions, form and position errors of the inner and outer surfaces. Since the maximum length of the workpiece can reach 2 000 mm , it is difficult to be clamped and adjusted and easy to produce clamping error. The eccentricity can be up to 1.5 mm, which has an interaction effect with the probe mounting offset. We mainly study the probe offset of the measuring machine and the influence of the workpiece clamping error on the measurement. A method of controlling the offset of the measuring probe is proposed. The effect of the clamping error is eliminated through the space coordinate transformation of the workpiece axis, and the axis is fitted by the least square method. Finally, a common fixture can be realized to meet the clamping requirements of the workpiece.
文摘Rotary machines are widely used in various applications. A reliable machinery fault detection technique is critically needed in industries to prevent the machinery system’s performance degradation, malfunction, or even catastrophic failures. The challenge for reliable fault diagnosis is related to the analysis of non-stationary features. In this paper, a wavelet spectrum (WS) technique is proposed to tackle the challenge of feature extraction from these non-stationary signatures;this work will focus on fault detection in rolling element bearings. The vibration signatures are first analyzed by a wavelet transform to demodulate representative features;the periodic features are then enhanced by cross-correlating the resulting wavelet coefficient functions over several contributive neighboring wavelet bands. The effectiveness of the proposed technique is examined by experimental tests corresponding to different bearing conditions. Test results show that the developed WS technique is an effective signal processing approach for non-stationary feature extraction and analysis, and it can be applied effectively for bearing fault detection.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.