A three-dimensional(3D) fast fluidized bed with the riser of 3.0 m in height and 0.1 m in inner diameter was established to experimentally study the cluster behaviors of Geldart B particles. Five kinds of quartz sand ...A three-dimensional(3D) fast fluidized bed with the riser of 3.0 m in height and 0.1 m in inner diameter was established to experimentally study the cluster behaviors of Geldart B particles. Five kinds of quartz sand particles(dp= 0.100, 0.139, 0.177, 0.250 and 0.375 mm and ρp= 2480 kg·m^(-3)) were respectively investigated, with the total mass of the bed material kept as 10 kg. The superficial gas velocity in the riser ranges from 2.486 to 5.594 m·s^(-1) and the solid mass flux alters from 30 to 70 kg·((m^(-2)·s))^(-1). Cluster characteristics and evolutionary processes in the different positions of the riser were captured by the cluster visualization systems and analyzed by the self-developed binary image processing. The results found four typical cluster structures in the riser,i.e., the macro stripe-shaped cluster, saddle-shaped cluster, U-shaped cluster and the micro cluster. The increasing superficial gas velocity and particle sizes result in the increasing average cluster size and the decreasing cluster time fraction, while the solid mass flux in the riser have the reverse influences on the cluster size and time fraction. Additionally, clusters in the upper region of the riser often have the larger size and time fraction than that in the lower region. All these effects of operating conditions on clusters become less obvious when particle size is less than 0.100 mm.展开更多
Way back in 1999,twelve volunteers locked themselves in hotel rooms in Beijing,Shanghai,and Guangzhou to participate in a“72-hour network survival experiment.”The goal was to stay in the room for three days and surv...Way back in 1999,twelve volunteers locked themselves in hotel rooms in Beijing,Shanghai,and Guangzhou to participate in a“72-hour network survival experiment.”The goal was to stay in the room for three days and survive on an allowance from the organizer,half in cash and half in electronic form,by purchasing food,bedding.展开更多
We carried out experiments to explore and characterize the gas-solid flow dynamics of Geldart group B particles in a dense circulating fluidized bed riser. By reducing the pressure drop across the solid control valve ...We carried out experiments to explore and characterize the gas-solid flow dynamics of Geldart group B particles in a dense circulating fluidized bed riser. By reducing the pressure drop across the solid control valve and increasing the solid inventory in the storage tank, a high solid circulation rate and a solid holdup above 0.075 throughout the riser were simultaneously achieved. At a solid-to-gas mass flux ratio of approximately 105, flow transitioned from fast fluidization to a dense suspension upflow. In the axial direction of the riser, solid holdup had an exponential profile, increasing with increasing solid circulation rate and Jot decreasing superficial gas velocity. From the riser's center to its wall, the solid holdup increased markedly, exhibiting a steep parabolic profile. Increasing the solid circulation rate increased the radial non-uniformity of the solid concentration, while increasing the superficial gas velocity had the opposite effect, In our dense circulating fluidized bed riser, Geldart group B particles had similar slip characteristics to Geldart group A particles,展开更多
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag character...In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.展开更多
This paper considers, through a lot of measured data of coal-bed gas, that the coal-bed gas is a kind of mixed gas of complex composition with some heavy hydrocarbons. In general, it is not a dry gas. The coal-bed hyd...This paper considers, through a lot of measured data of coal-bed gas, that the coal-bed gas is a kind of mixed gas of complex composition with some heavy hydrocarbons. In general, it is not a dry gas. The coal-bed hydrocarbon gases can obviously be divided into three stages of gas-storage: "poor hydrocarbon-storing stage", "rich hydrocarbon-storing stage" and "declining hydrocarbon stage". Authors point out that the normal gas geochemical indexes can relatively well show the geochemical chatacteristics of coal-bed gas. But, "the Benzene Index (B)" is a good indicator to identify the gas original types, and "the Hexane Index(H)" can show the gas evolution law and the organic matter maturity.展开更多
基金Supported by the National Key R&D Program of China[2016YFB0600802]the National Natural Science Foundation of China[51390492,51325601]
文摘A three-dimensional(3D) fast fluidized bed with the riser of 3.0 m in height and 0.1 m in inner diameter was established to experimentally study the cluster behaviors of Geldart B particles. Five kinds of quartz sand particles(dp= 0.100, 0.139, 0.177, 0.250 and 0.375 mm and ρp= 2480 kg·m^(-3)) were respectively investigated, with the total mass of the bed material kept as 10 kg. The superficial gas velocity in the riser ranges from 2.486 to 5.594 m·s^(-1) and the solid mass flux alters from 30 to 70 kg·((m^(-2)·s))^(-1). Cluster characteristics and evolutionary processes in the different positions of the riser were captured by the cluster visualization systems and analyzed by the self-developed binary image processing. The results found four typical cluster structures in the riser,i.e., the macro stripe-shaped cluster, saddle-shaped cluster, U-shaped cluster and the micro cluster. The increasing superficial gas velocity and particle sizes result in the increasing average cluster size and the decreasing cluster time fraction, while the solid mass flux in the riser have the reverse influences on the cluster size and time fraction. Additionally, clusters in the upper region of the riser often have the larger size and time fraction than that in the lower region. All these effects of operating conditions on clusters become less obvious when particle size is less than 0.100 mm.
文摘Way back in 1999,twelve volunteers locked themselves in hotel rooms in Beijing,Shanghai,and Guangzhou to participate in a“72-hour network survival experiment.”The goal was to stay in the room for three days and survive on an allowance from the organizer,half in cash and half in electronic form,by purchasing food,bedding.
基金We acknowledge support from the National High Technology Research and Development Program of China (2012AA06A115), National Natural Science Foundation of China (51476058, 91434120), and Fundamental Research Funds for the Central Universities (2014MS13).
文摘We carried out experiments to explore and characterize the gas-solid flow dynamics of Geldart group B particles in a dense circulating fluidized bed riser. By reducing the pressure drop across the solid control valve and increasing the solid inventory in the storage tank, a high solid circulation rate and a solid holdup above 0.075 throughout the riser were simultaneously achieved. At a solid-to-gas mass flux ratio of approximately 105, flow transitioned from fast fluidization to a dense suspension upflow. In the axial direction of the riser, solid holdup had an exponential profile, increasing with increasing solid circulation rate and Jot decreasing superficial gas velocity. From the riser's center to its wall, the solid holdup increased markedly, exhibiting a steep parabolic profile. Increasing the solid circulation rate increased the radial non-uniformity of the solid concentration, while increasing the superficial gas velocity had the opposite effect, In our dense circulating fluidized bed riser, Geldart group B particles had similar slip characteristics to Geldart group A particles,
基金supports from the State Key Development Program for Basic Research of China(973 Program)under Grant Nos.2009CB219904,2013CB632603the National Science and Technology Support Program of Ministry of Science and Technology of the People's Republic of China(Grant No. 2012BAB14B03)
文摘In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.
文摘This paper considers, through a lot of measured data of coal-bed gas, that the coal-bed gas is a kind of mixed gas of complex composition with some heavy hydrocarbons. In general, it is not a dry gas. The coal-bed hydrocarbon gases can obviously be divided into three stages of gas-storage: "poor hydrocarbon-storing stage", "rich hydrocarbon-storing stage" and "declining hydrocarbon stage". Authors point out that the normal gas geochemical indexes can relatively well show the geochemical chatacteristics of coal-bed gas. But, "the Benzene Index (B)" is a good indicator to identify the gas original types, and "the Hexane Index(H)" can show the gas evolution law and the organic matter maturity.