During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In thi...During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In this paper,damaged interfaces are considered as main potential leakage path:firstly in meso-level,gas flow rule along the interface is analyzed and the calculation of equivalent permeability is discussed.Then based on porous media seepage theory,gas leakage simulation model including salt rock,cavity interlayers and interface is built.With this strategy,it is possible to overcome the disadvantage of simulation burden with porous-fractured double medium.It also can provide the details of gas flowing along the damaged zones.Finally this proposal is applied to the salt cavern in Qianjian mines(East China).Under different operation pressures,gas distributions around two adjacent cavities are simulated;the evolvement of gas in the interlayers and salt rock is compared.From the results it is demonstrated that the domain of creep damage area has great influence on leakage range.And also the leakage in the interface will accelerate the development of leakage in salt rock.It is concluded that compared with observations,this new strategy provides closer answers.The simulation result proves its validity for the design and reasonable control of operating pressure and tightness evaluation of group bedded salt rock storage caverns.展开更多
Gypsum/salt beds are widely developed in petroliferous basins across the world.Most basins with gypsum/salt beds have been proven to host abundant hydrocarbon resources.Previous studies on the effects of gypsum/salt b...Gypsum/salt beds are widely developed in petroliferous basins across the world.Most basins with gypsum/salt beds have been proven to host abundant hydrocarbon resources.Previous studies on the effects of gypsum/salt beds on hydrocarbon reservoirs primarily focused on their excellent sealing property as cap rocks.However,an increasing number of exploration discoveries have shown that gypsum/salt beds have the potential to promote the formation of high-quality source rocks and hydrocarbon reservoirs.Gypsum/salt beds influence the generation,preservation and accumulation of hydrocarbons.Based on the systematic analysis of the generation of hydrocarbons in global gypsum/saltbearing sequences,the study discussed the control of gypsum/salt beds on play elements,and explore the relationship between the development of gypsum/salt beds and global large-and medium-scale hydrocarbon reservoirs.Furthermore,we analyzed the correlation between typical gypsum/saltbearing sequences and their hydrocarbon generation potentials in China.In-depth analysis shows three patterns in terms of the spatial superimposition of gypsum/salt beds and source rocks,that is,postsalt pattern,inter-salt pattern and pre-salt pattern.Among others,the source rocks of the inter-salt pattern are widely developed in salt basins and of great potential for hydrocarbon exploration.展开更多
The primary purpose of underground gas storages is to provide gas for seasonal consumptions or strategic reserve.The periodical operations of gas injection and extraction lead to cyclic loading on the walls and surrou...The primary purpose of underground gas storages is to provide gas for seasonal consumptions or strategic reserve.The periodical operations of gas injection and extraction lead to cyclic loading on the walls and surrounding rocks of gas storages.To investigate the mechanical behaviors of different host rocks in bedded salt deposit,laboratory experiments were conducted on the samples of rock salt,thenardite,glauberite and gypsum.The mechanical properties of rock samples under monotonic and cyclic loadings were studied.Testing results show that,under monotonic loading,the uniaxial compressive stress(UCS) of glauberite is the largest(17.3 MPa),while that of rock salt is the smallest(14.0 MPa).The UCSs of thenardite and gypsum are 16.3 and 14.6 MPa,respectively.The maximum strain at the peak strength of rock salt(halite) is much greater than those of the other three rocks.The elastic moduli of halite,thenardite,glauberite and gypsum are 3.0,4.2,5.1 and 6.8 GPa,respectively.Under cyclic loading,the peak strengths of the rock specimens are deteriorated except for rock salt.The peak strengths of thenardite,glauberite and gypsum decrease by 33.7%,19.1% and 35.5%,respectively;and the strains of the three rocks at the peak strengths are almost the same.However,the strain of rock salt at the peak strength increases by 1.98%,twice more than that under monotonic loading.Under monotonic loading,deformation of the tested rock salt,thenardite and glauberite shows in an elastoplastic style.However,it changes to a ductile style under cyclic loading.Brittle deformation and failure are only observed for gypsum.The results should be helpful for engineering design and operation of gas storage in bedded salt deposit.展开更多
Five multiparameter empirical criteria were exclusively evaluated by comparing them with the strength data covering various stress conditions to find out which failure criterion best fits the test data and describes t...Five multiparameter empirical criteria were exclusively evaluated by comparing them with the strength data covering various stress conditions to find out which failure criterion best fits the test data and describes the mechanical behavior of the salt rock sequence (halite,bedded composite specimens and anhydrite interlayers).Full-scale comparison of all criteria for the three rock types was conducted based on five standard statistics calculated from least squares curve-fitting,which measures both the goodness of fitting and the quality of future prediction.The results indicate that all five nonlinear criteria with a basic power form are efficient in predicting the strength trend in the low tension area as well as in the high compression area of the soft rocks.The parameters obtained for the bedded rock salt are somewhat in the ones for the "pure" rocks and are even closer to those obtained for the halite.The generalized Hoek-Brown criterion is proven to perform best to two rock strength data followed by one for the Bieniawski empirical criterion,thus is the best candidate for the analysis of the salt rock.The Sheorey empirical criterion consistently achieves an intermediate performance for all the three rocks.It seems that the superiority of the poly-axial criteria (the Mogi 1967 criterion and the N-type criterion) over the former three triaxial criteria no longer exists when applied to the conventional triaxial strength data.Besides,the method of tension cut-off was proposed to solve the ambiguity problem of the two poly-axial criteria in the tension field in the plane of the major (σ1) andminor principal stress (σ3).展开更多
Seismic information and balanced profile technology were used to reveal the influence of the salt bed in segmentation of structure and hydrocarbon accumulation in Qiulitag structural belt in Tarim basin. From west to ...Seismic information and balanced profile technology were used to reveal the influence of the salt bed in segmentation of structure and hydrocarbon accumulation in Qiulitag structural belt in Tarim basin. From west to east, the shortening of strata above the salt beds gradually decreases, while, the shortening below the salt beds gradually increases, which shows that the segmentation of structure integrated the seismic profile. There is great difference of the deformation of strata below and above the salt beds between the west segment and the east segment. The analysis of the distribution of oil/gas fields and the hydrocarbon properties indicates the similar segmentation to the structure segmentation. The salt beds in relatively shallow layers change the stress condition from basement of Kuqa foreland basin, which leads to the segmentation of Qiulitag structural belt. Because the salt beds in the west segment came into being earlier than those in the east segment, the west segment captures hydrocarbon from two sets of source rock, while the east segment can only capture hydrocarbons from one set of source rock. So, the salt beds play an important role in the segmentation of structure and hydrocarbon accumulation.展开更多
基金We acknowledge the following funds to give financial supports.They are China National Program on National natural sciences foundation of China Grant no.51104108 and 41172284,Key Basic Research Project(973 Program)Grant no.2009CB724603.
文摘During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In this paper,damaged interfaces are considered as main potential leakage path:firstly in meso-level,gas flow rule along the interface is analyzed and the calculation of equivalent permeability is discussed.Then based on porous media seepage theory,gas leakage simulation model including salt rock,cavity interlayers and interface is built.With this strategy,it is possible to overcome the disadvantage of simulation burden with porous-fractured double medium.It also can provide the details of gas flowing along the damaged zones.Finally this proposal is applied to the salt cavern in Qianjian mines(East China).Under different operation pressures,gas distributions around two adjacent cavities are simulated;the evolvement of gas in the interlayers and salt rock is compared.From the results it is demonstrated that the domain of creep damage area has great influence on leakage range.And also the leakage in the interface will accelerate the development of leakage in salt rock.It is concluded that compared with observations,this new strategy provides closer answers.The simulation result proves its validity for the design and reasonable control of operating pressure and tightness evaluation of group bedded salt rock storage caverns.
基金This study was funded by a key project of the National Natural Science Fund of China(41930426)a key project of the Petrochemical Joint Fund(U1663201).
文摘Gypsum/salt beds are widely developed in petroliferous basins across the world.Most basins with gypsum/salt beds have been proven to host abundant hydrocarbon resources.Previous studies on the effects of gypsum/salt beds on hydrocarbon reservoirs primarily focused on their excellent sealing property as cap rocks.However,an increasing number of exploration discoveries have shown that gypsum/salt beds have the potential to promote the formation of high-quality source rocks and hydrocarbon reservoirs.Gypsum/salt beds influence the generation,preservation and accumulation of hydrocarbons.Based on the systematic analysis of the generation of hydrocarbons in global gypsum/saltbearing sequences,the study discussed the control of gypsum/salt beds on play elements,and explore the relationship between the development of gypsum/salt beds and global large-and medium-scale hydrocarbon reservoirs.Furthermore,we analyzed the correlation between typical gypsum/saltbearing sequences and their hydrocarbon generation potentials in China.In-depth analysis shows three patterns in terms of the spatial superimposition of gypsum/salt beds and source rocks,that is,postsalt pattern,inter-salt pattern and pre-salt pattern.Among others,the source rocks of the inter-salt pattern are widely developed in salt basins and of great potential for hydrocarbon exploration.
基金Supported by the Program for New Century Excellent Talents in University of China (NCET-07-0594)the National Natural Science Foundation of China (50874078 and 50804033)the Special Support for National Excellent Ph.D.Thesis (200959)
文摘The primary purpose of underground gas storages is to provide gas for seasonal consumptions or strategic reserve.The periodical operations of gas injection and extraction lead to cyclic loading on the walls and surrounding rocks of gas storages.To investigate the mechanical behaviors of different host rocks in bedded salt deposit,laboratory experiments were conducted on the samples of rock salt,thenardite,glauberite and gypsum.The mechanical properties of rock samples under monotonic and cyclic loadings were studied.Testing results show that,under monotonic loading,the uniaxial compressive stress(UCS) of glauberite is the largest(17.3 MPa),while that of rock salt is the smallest(14.0 MPa).The UCSs of thenardite and gypsum are 16.3 and 14.6 MPa,respectively.The maximum strain at the peak strength of rock salt(halite) is much greater than those of the other three rocks.The elastic moduli of halite,thenardite,glauberite and gypsum are 3.0,4.2,5.1 and 6.8 GPa,respectively.Under cyclic loading,the peak strengths of the rock specimens are deteriorated except for rock salt.The peak strengths of thenardite,glauberite and gypsum decrease by 33.7%,19.1% and 35.5%,respectively;and the strains of the three rocks at the peak strengths are almost the same.However,the strain of rock salt at the peak strength increases by 1.98%,twice more than that under monotonic loading.Under monotonic loading,deformation of the tested rock salt,thenardite and glauberite shows in an elastoplastic style.However,it changes to a ductile style under cyclic loading.Brittle deformation and failure are only observed for gypsum.The results should be helpful for engineering design and operation of gas storage in bedded salt deposit.
基金Project(2009CB724608) supported by the National Basic Research Program of China
文摘Five multiparameter empirical criteria were exclusively evaluated by comparing them with the strength data covering various stress conditions to find out which failure criterion best fits the test data and describes the mechanical behavior of the salt rock sequence (halite,bedded composite specimens and anhydrite interlayers).Full-scale comparison of all criteria for the three rock types was conducted based on five standard statistics calculated from least squares curve-fitting,which measures both the goodness of fitting and the quality of future prediction.The results indicate that all five nonlinear criteria with a basic power form are efficient in predicting the strength trend in the low tension area as well as in the high compression area of the soft rocks.The parameters obtained for the bedded rock salt are somewhat in the ones for the "pure" rocks and are even closer to those obtained for the halite.The generalized Hoek-Brown criterion is proven to perform best to two rock strength data followed by one for the Bieniawski empirical criterion,thus is the best candidate for the analysis of the salt rock.The Sheorey empirical criterion consistently achieves an intermediate performance for all the three rocks.It seems that the superiority of the poly-axial criteria (the Mogi 1967 criterion and the N-type criterion) over the former three triaxial criteria no longer exists when applied to the conventional triaxial strength data.Besides,the method of tension cut-off was proposed to solve the ambiguity problem of the two poly-axial criteria in the tension field in the plane of the major (σ1) andminor principal stress (σ3).
基金the National Fundamental Research Program (No. 2005CB422108)
文摘Seismic information and balanced profile technology were used to reveal the influence of the salt bed in segmentation of structure and hydrocarbon accumulation in Qiulitag structural belt in Tarim basin. From west to east, the shortening of strata above the salt beds gradually decreases, while, the shortening below the salt beds gradually increases, which shows that the segmentation of structure integrated the seismic profile. There is great difference of the deformation of strata below and above the salt beds between the west segment and the east segment. The analysis of the distribution of oil/gas fields and the hydrocarbon properties indicates the similar segmentation to the structure segmentation. The salt beds in relatively shallow layers change the stress condition from basement of Kuqa foreland basin, which leads to the segmentation of Qiulitag structural belt. Because the salt beds in the west segment came into being earlier than those in the east segment, the west segment captures hydrocarbon from two sets of source rock, while the east segment can only capture hydrocarbons from one set of source rock. So, the salt beds play an important role in the segmentation of structure and hydrocarbon accumulation.