期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
A CFD Model for Fluid Dynamics in a Gas-fluidised Bed 被引量:1
1
作者 ZHANGKai StefanoBrandani 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第4期483-488,共6页
A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum ba... A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum balance equations to take into account the effect of the dispersed solid phase. This model has been extended to two-dimensional formulations and has been implemented in the commercial code CFX 4.3. The model correctly simulates the homogeneous fluidisation of Geldart Group A and the bubbling fluidisation of Geldart Group B in gas-solid fluidised beds. 展开更多
关键词 Gas-solid fluidised beds Modified particle bed model HYDRODYNAMICS CFD simulation
下载PDF
Numerical simulation and experimental verification of bubble size distribution in an air dense medium fluidized bed 被引量:11
2
作者 He Jingfeng Zhao Yuemin +2 位作者 Luo Zhenfu He Yaqun Duan Chenlong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期387-393,共7页
Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined ... Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB. 展开更多
关键词 Air dense medium fluidized bed Numerical simulation Bubble dynamical behavior Prediction model
下载PDF
A model for predicting bubble rise velocity in a pulsed gas solid fluidized bed 被引量:4
3
作者 Dong Liang Zhao Yuemin +4 位作者 Luo Zhenfu Duan Chenlong Wang Yingwei Yang Xuliang Zhang Bo 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期233-236,共4页
Bed stability, and especially the bed density distribution, is affected by the behavior of bubbles in a gas solid fluidized bed. Bubble rise velocity in a pulsed gas-solid fluidized bed was studied using photographic ... Bed stability, and especially the bed density distribution, is affected by the behavior of bubbles in a gas solid fluidized bed. Bubble rise velocity in a pulsed gas-solid fluidized bed was studied using photographic and computational fluid dynamics methods. The variation in bubble rise velocity was investigated as a function of the periodic pulsed air flow. A predictive model of bubble rise velocity was derived: ub=ψ(Ut+Up-Umf)+kp(gdb)(1/2). The software of Origin was used to fit the empirical coefficients to give ψ = 0.4807 and kp = 0.1305. Experimental verification of the simulations shows that the regular change in bubble rise velocity is accurately described by the model. The correlation coefficient was 0.9905 for the simulations and 0.9706 for the experiments. 展开更多
关键词 Pulsed fluidized bed Bubble Rise velocity Prediction model
下载PDF
Adsorption behavior of carbon dioxide and methane in bituminous coal:A molecular simulation study 被引量:10
4
作者 Jing You Li Tian +4 位作者 Chao Zhang Hongxing Yao Wu Dou Bin Fan Songqing Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第9期1275-1282,共8页
The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to b... The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site. 展开更多
关键词 Bituminous coal model Adsorption selectivity Enhanced coal bed methane recovery Carbon dioxide sequestration Molecular simulation
下载PDF
Analytical Model for the Palaeoenvironmental Evolution of the Nihewan Beds 被引量:2
5
作者 Yue Jun Wen Qizhong Tianjin Institute of Geology and Mineral Resources Institute of Geochemistry, Academia Sinica 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1991年第1期77-86,共10页
In this paper, the evolutional characteristics of palaeoclimate and oxidation-reduction conditions as well asacidity-alkalinity environment are discussed by means of the step-regression, cluster, optimal partitioning ... In this paper, the evolutional characteristics of palaeoclimate and oxidation-reduction conditions as well asacidity-alkalinity environment are discussed by means of the step-regression, cluster, optimal partitioning andcorrelation analyses of CaCO_3, C / P_2O_5, Fe^(2+) / Fe^(3+), pH and Eh values, taking the Xiaodukou section in theNihewan basin as an example. The CaCO_3, C / P_2O_5 and pH were calculated respectively using the optimalpartitioning method. Thus five cold zones and six warm zones as well as five reduction and six oxidation zoneswere distinguished. Then the inductive method was used to produce four numerical groups: 8.10, 8.3-8.4,8.6-8.7 and 8.9-8,97. The above-mentioned results are respectively based on CaCO_3 content, C/P_2O_5 andpH values. From Fig. 3, Tables 1 and 2 it can be seen that the Nihewan Beds were formed mainly under a re-duction and slightly alkaline environment of cold climate, with pH values of 8.3-8.4. Fig. 3 shows that bed 35is approximately near the boundary between the Brunhes and Matuyama polarity epochs, 0.73 Ma in age; bed26 is roughly near the Jaramillo event (base), 0.97 Ma in age; bed 18 coincides roughly with themagnetostratigraphic boundary of 2.00 Ma (?). Bed 13 may be the Pleistocene-Pliocene boundary, 2.48 Ma inage. Thus geochemical zones Ⅰ, Ⅱ, Ⅲ and Ⅳ include respectively cold zones 1; 2 and 3; 4; and 5. 展开更多
关键词 Analytical Model for the Palaeoenvironmental Evolution of the Nihewan Beds
下载PDF
Experimental Study on Scours Downstream of Floodgates
6
作者 张玮 陈锡林 +2 位作者 徐金环 李国臣 王志谦 《China Ocean Engineering》 SCIE EI 2000年第2期243-254,共12页
The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and... The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and the incipient velocity is determined in a laboratory flume, and it is used to design the scour model and to select model sand material. The experimental results show that scours below the floodgate is unavoidable due to large discharge and Low tidal level. Scours is caused by two factors: the rapid flow passing though the floodgate and the water drop near the river mouth during low ride, and the scout below the floodgate is more critical to the structural design. It is suggested that anti-scour walls should be used instead of riprap. The ideas and methods adopted in the experiment can be used as reference in the study on river scout under similar conditions. 展开更多
关键词 movable bed model river scour incipient velocity
下载PDF
Adsorptive Removal of Para-chlorophenol Using Stratified Tapered Activated Carbon Column
7
作者 M.F.F.Sze G.McKay 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第3期444-454,共11页
The feasibility of adsorptive removal of single component organic compound(para-chlorophenol) by Calgon Filtrasorb 400(F400) carbon was investigated.The Redlich-Peterson equation was found to be the best fit model for... The feasibility of adsorptive removal of single component organic compound(para-chlorophenol) by Calgon Filtrasorb 400(F400) carbon was investigated.The Redlich-Peterson equation was found to be the best fit model for describing the equilibrium relationship between the para-chlorophenol adsorption onto F400 carbon.Four adsorption columns with different column geometry and adsorbent particle stratification were used to examine the adsorption kinetics onto F400 carbons.The Bed Depth Service Time(BDST) model was applied and modified to analyse the performance of the columns and the effect of different operating variables.When combining the effects of adsorption efficiency and the associated pressure drop of each type of adsorption columns tested,the carbon stratified tapered column has been determined to be the most efficient engineering option for removing organics,in which the enhancement of the adsorbent bed in terms of longer breakthrough time and higher saturation percentage is the greatest amongst the four types of columns with reasonably small pressure drop across the fixed-bed column. 展开更多
关键词 adsorption para-chlorophenol activated carbon tapered column bed depth service time model pressure drop
下载PDF
Characterization of P-nitrophenol Adsorption Kinetic Properties in Batch and Fixed Bed Adsorbers
8
作者 邵琰 ZHANG Huiping 鄢瑛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1152-1160,共9页
P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe th... P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe the adsorption kinetics for PNP in stirred batch adsorber at various initial concentrations and activated carbon dosages. The fixed bed model considering both external and internal mass transfer resistances as well as axial dispersion with non-linear isotherm was utilized to predict the fixed bed breakthrough curves for PNP adsorption under the conditions of different flow rates and inlet concentrations. The equilibrium parameters and surface diffusivity(Ds) were obtained from separate experiments in batch adsorber. The obtained value of Ds is 4.187×1012 m2/s. The external film mass transfer coefficient(kf) and axial dispersion coefficient(DL) were estimated by the correlations of Goeuret and Wike-Chang. The Biot number determined by HSDM indicated that the adsorption rate of PNP onto activated carbon in stirred batch was controlled by intraparticle diffusion and film mass transfer. A sensitivity analysis was carried out and showed that the fixed bed model calculations were sensitive to Ds and kf, but insensitive to DL. The sensitivity analysis and Biot number both confirm that intraparticle diffusion and film mass transfer are the controlling mass transfer mechanism in fixed bed adsorption system. 展开更多
关键词 adsorption activated carbon modeling fixed bed adsorber simulation
下载PDF
Reactive gas-solids flows in large volumes—3D modeling of industrial circulating fluidized bed combustors 被引量:5
9
作者 Reiner Wischnewski Lars Ratschow +1 位作者 Ernst-Ulrich Hartge Joachim Werther 《Particuology》 SCIE EI CAS CSCD 2010年第1期67-77,共11页
A model is presented for the simulation of reactive gas-solids flows in large industrial reactors. Circulating fluidized bed (CFB) combustors with several thousands of cubic meters reaction volume are probably the l... A model is presented for the simulation of reactive gas-solids flows in large industrial reactors. Circulating fluidized bed (CFB) combustors with several thousands of cubic meters reaction volume are probably the largest reactors of this type. A semi-empirical modeling approach has been chosen to model the three-dimensional concentration distributions of gas and solids components and temperatures inside the combustion chamber of such boilers. Two industrial CFB boilers are investigated in detail: the 105 MWe Duisburg combustor in Germany and the 235 MWe Turow combustor in Poland. The semi-empirical model approach is described first. Then the model is used to show how the three-dimensional concentration and temperature fields are formed by the interaction of several local phenomena. Good agreement between simulation and measurements has been achieved. 展开更多
关键词 Circulating fluidized bed Large-scale Combustion 3D modeling
原文传递
Hydrodynamic modeling strategy for dense to dilute gas-solid fluidized beds
10
作者 Seyed Ahmad Kia Javad Aminian 《Particuology》 SCIE EI CAS CSCD 2017年第2期105-116,共12页
When investigating the hydrodynamic behavior of gas–solid flow systems, there are several options for the drag function, viscosity model, and other parameters. The low accuracy obtained with a random trial and error ... When investigating the hydrodynamic behavior of gas–solid flow systems, there are several options for the drag function, viscosity model, and other parameters. The low accuracy obtained with a random trial and error modeling strategy has led researchers to develop new drag models that are fine-tuned for their specific studies. However, besides the drag functions, an appropriate viscosity model together with radial distribution function have a great impact on the hydrodynamic modeling of fluidized beds. In this study, a detailed validation and verification task is conducted using three different experimental datasets to derive a modeling strategy for predicting hydrodynamic behavior in dense to dilute flow regimes of various fluidized beds. For this purpose, the steady-state Reynolds-averaged Navier–Stokes equations are solved in a finite volume scheme using the twoPhaseEulerFoam solver in the OpenFOAM 2.1.1 software. A comparative study of different drag and viscosity models enables an optimal modeling strategy to be determined for the accurate prediction of the bed pressure drop, bed expansion ratio, time-averaged solid hold-up, and bed height in various dense and dilute flow regimes. Our results show that the modeling strategy prescribed in this study is widely applicable for identifying the hydrodynamic characteristics of various gas–solid fluidized beds with different operating conditions. 展开更多
关键词 modeling strategy Hydrodynamic behavior Fluidized bed OpenFOAM Drag-viscosity model
原文传递
Two and three dimensional modeling of fluidized bed with multiple jets in a DEM-CFD framework
11
作者 Surya Deb Danesh K.Tafti 《Particuology》 SCIE EI CAS CSCD 2014年第5期19-28,共10页
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element m... Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenlDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 ~m are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system. 展开更多
关键词 Discrete element modeling Fluidized beds Solid fraction Bed height Grid zone Multiple jets Particle flux
原文传递
Numerical simulation of gas-solid flow with two fluid model in a spouted-fluid bed 被引量:10
12
作者 Shuyan Wang Liqian Zhao +4 位作者 Chunsheng Wang Yinsong Liu Jinsen Gao Yang Liu Qinglin Cheng 《Particuology》 SCIE EI CAS CSCD 2014年第3期109-116,共8页
The flow characteristics in a spouted-fluid bed differ from those in spouted or fluidized beds because of the injection of the spouting gas and the introduction of a fluidizing gas. The flow behavior of gas-solid phas... The flow characteristics in a spouted-fluid bed differ from those in spouted or fluidized beds because of the injection of the spouting gas and the introduction of a fluidizing gas. The flow behavior of gas-solid phases was predicted using the Eulerian-Eulerian two-fluid model (TFM) approach with kinetic theory for granular flow to obtain the flow patterns in spouted-fluid beds. The gas flux and gas incident angle have a significant influence on the porosity and particle concentration in gas-solid spouted-fluid beds. The fluidizing gas flux affects the flow behavior of particles in the fountain. In the spouted-fluid bed, the solids volume fraction is low in the spout and high in the annulus. However, the solids volume fraction is reduced near the wall. 展开更多
关键词 Spouted-fluid bed Two fluid modeling CFD Fluidization
原文传递
A new drag model for TFM simulation of gas-solid bubbling fluidized beds with Geldart-B particles 被引量:10
13
作者 Yingce Wang Zheng Zou +1 位作者 Hongzhong Li Qingshan Zhu 《Particuology》 SCIE EI CAS CSCD 2014年第4期151-159,共9页
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag character... In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did. 展开更多
关键词 Fluidization Bubbling fluidized bed CFD Geldart-B particles Drag model
原文传递
Modelling the bed characteristics in fluidised-beds for top-spray coating processes 被引量:2
14
作者 Mike Vanderroost Frederik Ronsse +1 位作者 Koen Dewettinck Jan G.Pieters 《Particuology》 SCIE EI CAS CSCD 2012年第6期649-662,共14页
A particle sub-model describing the bed characteristics of a bubbling fluidised bed is presented. Atomisation air, applied at high pressures via a nozzle positioned above the bed for spray formation, is incorporated i... A particle sub-model describing the bed characteristics of a bubbling fluidised bed is presented. Atomisation air, applied at high pressures via a nozzle positioned above the bed for spray formation, is incorporated in the model since its presence has a profound influence on the bed characteristics, though the spray itself is not yet considered. A particle sub-model is developed using well-known empirical relations for particle drag force, bubble growth and velocity and particle distribution above the fluidised-bed surface. Simple but effective assumptions and abstractions were made concerning bubble distribution, particle ejection at the bed surface and the behaviour of atomisation air flow upon impacting the surface of a bubbling fluidised bed, The model was shown to be capable of predicting the fluidised bed characteristics in terms of bed heights, voidage distributions and solids volume fractions with good accuracy in less than 5 min of calculation time on a regular desktop PC. It is therefore suitable for incorporation into general process control models aimed at dynamic control for process efficiency and product quality in top-spray fluidised bed coating processes. 展开更多
关键词 Fluidised bed Modelling Voidage distribution Fluidised bed characteristics Multiphase flow Coating process
原文传递
Multi-scale magnetic resonance measurements and validation of Discrete Element Model simulations 被引量:4
15
作者 Christoph R. Müller Daniel J. Holland +3 位作者 James R. Third Andrew J. Sederman John S. Dennis Lynn F. Gladden 《Particuology》 SCIE EI CAS CSCD 2011年第4期330-341,共12页
This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization re... This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization regimes. The unique capability of MR to not only image the solids' distribution (voidage) but also the velocity of the particulate phase is clearly shown. It is demonstrated that MR can provide measurements over different length and time scales. With the MR equipment used for the studies summarized here, temporal and spatial scales range from sub-millisecond to hours and from a few hundred micrometres to a few centimetres, respectively. Besides providing crucial data required for an improved understanding of the underlying physics of granular flows, multi-scale MR measurements were also used to validate numerical simulations of granular systems. It is shown that predictions of time-averaged properties, such as voidage and velocity of the particulate phase, made using the Discrete Element Model agree very well with MR measurements. 展开更多
关键词 Discrete Element Modelling Magnetic resonance imaging MultiscaleGas-fluidized beds Rotating cylinders
原文传递
Simulations of vertical jet penetration using a filtered two-fluid model in a gas-solid fluidized bed 被引量:2
16
作者 Shuyan Wang Baoli Shao +5 位作者 Xiangyu Li Jian Zhao Lili Liu Yikun Liu gang Liu Qun Dong 《Particuology》 SCIE EI CAS CSCD 2017年第2期95-104,共10页
The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. ... The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved. 展开更多
关键词 Fluidized bed Vertical jet penetration Filtered model Computational fluid dynamics Numerical simulation
原文传递
Experimental and numerical investigation of liquid-solid binary fluidized beds: Radioactive particle tracking technique and dense discrete phase model simulations 被引量:3
17
作者 Varsha Jain Lipika Kalo +2 位作者 Deepak Kumar Harish J. Pant Rajesh K. Upadhyay 《Particuology》 SCIE EI CAS CSCD 2017年第4期112-122,共11页
Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, ... Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, the behavior of monodisperse and binary liquid-solid fluidized beds of the same density but dif- ferent sizes is investigated using radioactive particle tracking (RPT) technique and a dense discrete phase model (DDPM). Experiments and simulations are performed in monodisperse fluidized beds containing two different sizes of glass beads (0.6 and I mm) and a binary fluidized bed of the same particles for vari- ous bed compositions. The results show that both RPT and DDPM can predict the mixing and segregation pattern in liquid-solid binary fluidized beds. The mean velocity predictions of DDPM are in good agree- ment with the experimental findings for both monodisperse and binary fluidized beds. However, the axial root mean square velocity predictions are only reasonable for bigger particles. Particle-particle interac- tions are found to be critical for predicting the flow behavior of solids in liquid-solid binary fluidized beds. 展开更多
关键词 Binary bed Liquid-solid flow Fluidized bed Radioactive particle tracking Dense discrete phase model
原文传递
Motion characteristics of binary solids in a liquid fluidised bed with inclined plates 被引量:1
18
作者 Yanfeng Li Xiangqian Qi +4 位作者 Ningbo Li Ai Wang Wenjun Zhang Rongtao Zhu Zhengbiao Peng 《Particuology》 SCIE EI CAS CSCD 2018年第4期48-54,共7页
Rectangular inclined channels prove promising for solid classification based on the principle of parti- cle differential sedimentation. In the present work, we investigated the motion characteristics of binary solids ... Rectangular inclined channels prove promising for solid classification based on the principle of parti- cle differential sedimentation. In the present work, we investigated the motion characteristics of binary solids in a modified fluidised bed (mFB) with inclined plates. We developed a theoretical model for the particle motion behaviour that accounts for the average solid volume fraction in the inclined channel and interactions between binary solids. The experimental system was designed to be consistent with the idealised theoretical arrangements to maximise the measurement accuracy. The experimental particles were mixtures of silica sand particles of sizes 425-710 i^m and 710-880/~m, respectively. Specifically, we investigated the flow hydrodynamics of the binary suspension in terms of the settling length of both par- ticle species and the bed expansion behaviour. We also analysed the utilisation factor and the separation efficiency of the mFB. The results showed that the average solid volume fraction in the inclined channel fluctuated slightly for a given total solid inventory. The utilisation factor and separation efficiency of the system decreased when increasing either the fluidisation velocity or the solid inventory. The prediction results were in good agreement with the experimental data with an absolute deviation of less than 15%. 展开更多
关键词 Inclined channel Liquid-solid flow Fluidised bed Sedimentation Fluidisation Theoretical model
原文传递
A comparative assessment of empirical and lattice Boltzmann method-based drag models for simulation of gas-solid flow hydrodynamics in a bubbling fluidized bed 被引量:1
19
作者 Carlos M. Romero Luna Luis R. Carrocci +1 位作者 Gretta L.A.F. Arce Ivonete Avila 《Particuology》 SCIE EI CAS CSCD 2017年第4期129-137,共9页
In simulations of fluidized beds using computational fluid dynamics (CFD), the description of gas-solid flow hydrodynamics relies on a drag model to account for the momentum transfer between gas and solid phases. Al... In simulations of fluidized beds using computational fluid dynamics (CFD), the description of gas-solid flow hydrodynamics relies on a drag model to account for the momentum transfer between gas and solid phases. Although several studies of drag models have been published, there have been few investigations of the application of lattice Boltzmann method (LBM)-based drag models to bubbling fluidized bed simu- lations. In the present study, a comprehensive comparison of empirical and LBM-based drag models was carried out to assess the performance of these models during simulations of gas-solid flow hydrodynam- ics in a bubbling fluidized bed. A CFD model using the MFIX code based on the Eulerian-Eulerian approach and the kinetic theory of granular flow was used to simulate a 2D bubbling fluidized bed with Geldart B particles. The simulation results were validated by comparison with experimental data. Statistical anal- ysis of the results shows that LBM-based drag models can reliably model gas-solid flow hydrodynamics in a bubbling fluidized bed. 展开更多
关键词 CFD Drag model Gas-solid flow hydrodynamics Bubbling fluidized bed
原文传递
A model for expansion ratio in liquid-solid fluidized beds
20
作者 Alok Tripathy A.K.Sahu +1 位作者 S.K.Biswal B.K.Mishra 《Particuology》 SCIE EI CAS CSCD 2013年第6期789-792,共4页
Liquid-solid fluidized beds are used in mineral processing industries to separate particles based on parti- cle size, density, and shape. Understanding the expanded fluidized bed is vital for accurately assessing its ... Liquid-solid fluidized beds are used in mineral processing industries to separate particles based on parti- cle size, density, and shape. Understanding the expanded fluidized bed is vital for accurately assessing its performance. Expansion characteristics of the fluidized bed were studied by performing several experi- ments with iron ore, chromite, quartz, and coal samples. Using water as liquid medium, experiments were conducted to study the effects of particle size, particle density, and superficial velocity on fluidized bed expansion. The experimental data were utilized to develop an empirical mathematical model based on dimensional analysis to estimate the expansion ratio of the fluidized bed in terms of particle character- istics, operating and design parameters. The predicted expansion ratio obtained from the mathematical model is in good agreement with the experimental data. 展开更多
关键词 Fluidization Bed expansion Mathematical modelling Dimensional analysis Particle processing Void fraction
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部