The Makhonjwa Mountains, traditionally referred to as the Barberton Greenstone Belt, retain an iconic Paleoarchean archive against which numerical models of early earth geodynamics can be tested. We present new geolog...The Makhonjwa Mountains, traditionally referred to as the Barberton Greenstone Belt, retain an iconic Paleoarchean archive against which numerical models of early earth geodynamics can be tested. We present new geologic and structural maps, geochemical plots, geo- and thermo-chronology, and geophysical data from seven silicic, mafic to ultramafic complexes separated by major shear systems across the southern Makhonjwa Mountains. All reveal signs of modern oceanic back-arc crust and subductionrelated processes. We compare the rates of processes determined from this data and balance these against plate tectonic and plume related models. Robust rates of both horizontal and vertical tectonic processes derived from the Makhonjwa Mountain complexes are similar, well within an order of magnitude, to those encountered across modern oceanic and orogenic terrains flanking Western Pacific-like subduction zones. We conclude that plate tectonics and linked plate-boundary processes were well established by 3.2-3.6 Ga. Our work provides new constraints for modellers with rates of a 'basket' of processes against which to test Paleoarchean geodynamic models over a time period close to the length of the Phanerozoic.展开更多
The identification of large-giant bedrock landslides triggered by earthquake aims to the landslide prevention and control. Previous studies have described the basic characteristics, distribution, and the formation mec...The identification of large-giant bedrock landslides triggered by earthquake aims to the landslide prevention and control. Previous studies have described the basic characteristics, distribution, and the formation mechanism of seismic landslides (Bijan Khazai et al., 2003; Chong Xu et al., 2013; Lewis a. Owen et al., 2008; Randall W. Jibson et al., 2006). However, few researches have focused on the early identification indicators of large-giant bedrock landslides triggered by earthquake (David k. Keefer., 1984; Janusz Wasowski et al., 2011; Alexander L.Strom., 2009; Patrick Meunier et al., 2008; Shahriar Vahdani et al., 2002; Bijan Khazai et al., 2003). This paper presents the identification indicators of large-giant bedrock landslides triggered by earthquake in the Longmenshan tectonic belt on the basic of their characteristics, distribution and the relationship between seismic landslides and the peak ground motion acceleration.展开更多
Subsurface stormflow is a dominant runoff mechanism in steep humid mountainous areas.An insite measurement of subsurface stormflow suggests that the bedrock surface plays an important role in the runoff generation and...Subsurface stormflow is a dominant runoff mechanism in steep humid mountainous areas.An insite measurement of subsurface stormflow suggests that the bedrock surface plays an important role in the runoff generation and routing process,which was rarely adopted in hydrological modelling studies.To improve the runoff simulation performance,the bedrock surface topographic index is introduced,and a modified TOPMODEL based on the bedrock surface topographic index is developed to simulate the runoff.The modified TOPMODEL is applied to the Huangbengliu(HBL),a steep watershed in Gongga Mountain,and proved to be more appropriate for the HBL watershed,especially for peak simulation.The Nash-Sutcliffe model efficiency(NSE)is improved from 0.24 to 0.58 in the calibration period and from 0.40 to 0.62 in the verification period.The result of this study can advance the understanding of the mechanism of flash floods and contribute flood control and disaster prevention in the HBL watershed and similar areas.展开更多
The highest volcano in Mexico,at the same time the third largest mountain in North America(Citlaltépetl,5610 m a.s.l.),is home to the largest glacier in the country.Because of the extinction of the Popocatép...The highest volcano in Mexico,at the same time the third largest mountain in North America(Citlaltépetl,5610 m a.s.l.),is home to the largest glacier in the country.Because of the extinction of the Popocatépetl glacier(5500 m a.s.l.)caused by eruptive activity,and the almost disappearance of the Iztaccíhuatl glaciers(5220 m a.s.l.)due to the lower elevation of the mountain,the Glaciar Norte of Citlatépetl has been the only glacier that has shown a certain degree of stability as a response to the altitude in which it is located.However,as occurs in almost all glaciers on the planet,the retreat of its glacier terminus has been continuous.Furthermore,during the last years the thickness of its upper part began to decrease rapidly until its bedrock was exposed for the first time in 2019.Due to its ecosystem importance and because it is the main glacier in Mexico,as well as the only one in the world located at latitude 19°N,in this work its current dimensions are updated,as well as the local climatology that governs the current state of the glacier is pointed out.The study was based on the analysis of high-resolution Sentinel-2 optical images,as well as through Sentinel-1 SAR images,with the support of climatological information from the study area.Therefore,the outcropping of the bedrock in the accumulation zone and the consequent horizontal retreat of the upper part of the glacier are documented;at the same time,the decrease in the thickness of the ice along it is noted.The rocky outcrop in the accumulation zone suggests that the flow dynamics of the ice towards the ablation zone will be considerably less,accelerating the retreat of the glacier terminus.Finally,the ascent of the glacial front to 5102 m a.s.l.and the modelled altitude of the equilibrium line to 5276 m a.s.l.are reported as a warning signal in terms of snow catchment and mass balance;likewise,the decrease of 23%of its surface is also indicated regarding the surface reduction monitoring that has been done until 2017.These findings may indicate that the future of this glacier is related to its possible extinction sooner than previously thought,with severe environmental consequences,especially in terms of the provision of drinking water for thousands of inhabitants of the slopes of the volcano.This research is expected to help reflect on the impacts of current climate variability and at the same time serve as a reference for the tropical glaciers on the planet.展开更多
For a safe extracting of the mine resource of the razor thin capping rock, a study of waterproof, sand prevention, roof fall prevention must be made. As a result, it’s necessary to master the engineering feature of w...For a safe extracting of the mine resource of the razor thin capping rock, a study of waterproof, sand prevention, roof fall prevention must be made. As a result, it’s necessary to master the engineering feature of weathering zone of bedrock. According to the lithology appraisal and X diffract analyses, the mineral feature of weathering zone of bedrock in 810 producing area has been studied in this article. By testing the physical mechanics index of weathering zone, we have found out some features of physical mechanic quality. Utilizing the determined result of viscosity index and slaking test, we reach a conclusion of the water stability of weathering zone, that is the weathering zone rock belongs to the type that is easily slaked when encountered water and the water stability is weak.展开更多
The bedrock weathered crust in front of the Altun Mountains in the Qaidam Basin,western China,is different from others because this is a salt-lake basin,where saline water fluid infiltrates and is deposited in the ove...The bedrock weathered crust in front of the Altun Mountains in the Qaidam Basin,western China,is different from others because this is a salt-lake basin,where saline water fluid infiltrates and is deposited in the overlying strata.A large amount of gypsum infills the bedrock weathered crust,and this has changed the pore structure.Using core observation,polarized light microscopy,electron probe,physical property analysis and field emission scanning electron microscopy experiments,the characteristics of the weathered bedrock have been studied.There are cracks and a small number of dissolved pores in the interior of the weathered crust.Matrix micropores are widely developed,especially the various matrix cracks formed by tectonics and weathering,as well as the stress characteristics of small dissolved pores,and physical properties such as porosity and permeability.This‘dual structure’developed in the bedrock is important for guiding the exploration of the lake basin bedrock for natural gas.展开更多
The Huron River consists of alternating bedrock reaches and alluvial reaches. Analysis of historical aerial photography from 1950-2015 reveals six major channel avulsion events in the 8-km study area. These avulsions ...The Huron River consists of alternating bedrock reaches and alluvial reaches. Analysis of historical aerial photography from 1950-2015 reveals six major channel avulsion events in the 8-km study area. These avulsions occurred in the alluvial reaches but were strongly influenced by the properties of the upstream bedrock reach (“inherited characteristics”). The bedrock reaches aligned with the azimuth of joint sets in the underlying bedrock. One inherited characteristic in the alluvial reach downstream is that the avulsion channels diverged only slightly from the orientation of the upstream bedrock channel (range 2 °- 38 °, mean and standard deviation 12.1 °± 13.7 °). A second inherited characteristic is that avulsion channels were initiated from short distances downstream after exiting the upstream bedrock channel reach (range 62 - 266 m, mean and standard deviation 143.7 ± 71.0 m), which is a fraction of the meander wavelength (1.2 km). Field evidence shows that some avulsion channel sites were re-occupied episodically. In addition, two properties were necessary for channel avulsions: 1) avulsion events were triggered by channel-forming hydrologic events (5-year recurrence interval flows), but not every channel-forming hydrologic event resulted in an avulsion, and 2) channel sinuosity (P) increased to 1.72 - 1.77 prior to an avulsion then decreased to 1.65 - 1.70 following an avulsion, suggesting that P ≥ 1.72 is the “critical sinuosity” or triggering value for avulsions on the Huron River. In summary, for this river consisting of alternating bedrock and alluvial reaches, the bedrock reaches impose certain parameters on downstream alluvial reaches (including sediment supply, channel direction and avulsion channel position downstream after exiting a bedrock reach) while adjustments in sinuosity and sediment storage occur in the alluvial reaches.展开更多
Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 year...Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11 89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map.展开更多
The room and pillar method is usually used to extract coal from shallowly buried seams with thin bedrock. This results in a very low production efficiency and in a low degree of extraction. In recent years short-wall ...The room and pillar method is usually used to extract coal from shallowly buried seams with thin bedrock. This results in a very low production efficiency and in a low degree of extraction. In recent years short-wall continuous mechanical mining has been extensively used in many situations except shallowly buried coal seams with thin bedrock. The principles governing movement of the overlying strata above the 2-2 coal seam were deduced from in-situ experience, laboratory data, calculations and computer simulations. The thicknesses of the bedrock in the Shendong Coal Field where the coal is shallowly buried are classified into 5 types: <10 m, 10–15 m, 15–25 m, 25–35 m and >35 m, which was done using fuzzy clustering results. A series of reasonable, relative parameters in each category have been calculated and analyzed. One proposed way to perform short-wall continuous mechanical mining in shallowly buried coal seams is given. This is significant for coal mines with similar geological conditions.展开更多
Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and econo...Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.展开更多
The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved b...The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved by employing the technology of Hankel transform. By taking into account the boundary conditions, the dual integral equations of torsional vibration of a rigid circular plate are established, which are further converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficients of the foundation on saturated stratum, the contact shear stress under the foundation and the angular amplitude of the foundation are evaluated. Numerical results indicate that, when the dimensionless height is bigger than 5, saturated stratum overlaying bedrock can be treated as saturated half space approximately. When the dimensionless frequency is low, the permeability of the soil must be taken into account. Furthermore, when the vibration frequency is a constant, the height of the saturated stratum has a slight effect on the dimensionless contact shear stress under the foundation.展开更多
The present work focuses on the volcanic basement rock geochemistry of Mount Makabaï(MarouaCameroon city)in relation to groundwater geochemistry.Investigations were centered on an approach involving an associatio...The present work focuses on the volcanic basement rock geochemistry of Mount Makabaï(MarouaCameroon city)in relation to groundwater geochemistry.Investigations were centered on an approach involving an association of several methods such as geological cartography,hydrogeology,and geochemistry.Three rock samples,four disturbed soil samples,three undisturbed soil samples,and 20 samples of groundwater in 10 wells were collected during fieldwork and prepared for laboratory analyses.Bedrocks exhibit porphyritic,aphyric,and subaphiric textures.The phenocryst phases are mainly olivine,clinopyroxene,and plagioclase.Based on whole rock major element chemical compositions,the Makabaï samples,plotted on Na_(2)O+K_(2)O versus SiO_(2)diagram,are mugearite,hawaiite,and basalt.The ratio of(MgO+CaO)/(Na_(2)O+K_(2)O)exceeds unity and shows dominance of alkaline Earth metals(MgO:2.99-4.48%;CaO:6.19-9.80%)relatively to alkali metals(Na_(2)O:2.27-4.46%;K_(2)O:2.09-2.51%).Exchangeable base contents are high,mostly represented by Ca and Mg,whose contents vary from 14.6 to 35.28 cmol(+)kg^(-1)and from 3.28 to9.48 cmol(+)kg^(-1)respectively.The CECclayis likewise high,fluctuating between 116.80 and181.38 cmol(+)kg^(-1),values in line with the presence of 2:1 clay minerals represented in the study area by montmorillonite.In the water samples,the Ca2+and Na+contents are generally higher than K^(+)and Mg^(2+),reflecting the relative abundance of Na_(2)O and CaO oxides to K_(2)O and MgO oxides in rocks where different waters were sampled.The waters of Makabaï are acidic to neutral(6.3≤pH≤7.4)and weakly to highly mineralized(110.0≤EC≤1190.0μS/cm).Hydro-geochemical classification by using the Piper diagram revealed two water types:(1)CaMg-HCO_(3)(40%)and(2)CaMg-Cl or CaMg-SO4(60%).The average content of ions in all the analyzed samples was HCO_(3)^(-)>>NO_(3)^(-)>SO_(4)^(2-)>Cl-for anions and Ca^(2+)>>Mg^(2+)>Na^(+)>K^(+)for cations.Major mechanisms governing ionic constituents of groundwater in the study area are water-rock interactions,silicate weathering,and ion exchange.展开更多
Site condition and bedrock depth play important roles in the determination of peak surface acceleration(PSA)values by earthquake motions.The soil parameters of shear wave velocity(Vs)and standard penetration test-numb...Site condition and bedrock depth play important roles in the determination of peak surface acceleration(PSA)values by earthquake motions.The soil parameters of shear wave velocity(Vs)and standard penetration test-number(N)value for Jakarta city are available up to 100 m below the Earth’s surface even though the typical depths to bedrock are in excess of 100 m.This study referred to the base motion peak ground acceleration(PGA)values of 0.100 g,0.218 g and 0.378 g to predict the PSA values using the Nonlinear Earthquake site Response Analysis(NERA)to analyse a simulated dataset for the bedrock depths of 100 m,200 m,300 m,400 m and 500 m with conditioned by clayey and sandy soils.A new empirical equation of Vs=102.48 N0.297(m/s)was proposed to calculate the values of Vsused as an input parameter in the NERA programme for the prediction of seismic wave propagation.The results showed that the PSA values are dependent on the amplitude of seismic waves,depths of bedrock and the local site conditions.Changes in the PSA values from 41.0%to 51.5%and from 46.1%to 79.8%for the bedrocks overlain by sand,from 20.0%to 42.1%and from 45.9%to 58.8%for the bedrocks overlain by clay with increasing of bedrock depths from 200 m to 300 m and from 400 m to 500 m,respectively,were predicted for a 2500-year return period earthquake.Decreases in the PSA values by 41.0%,51.5%,46.1%,79.8%for the bedrocks overlain by sand and by 20.0%,42.1%,45.9%,58.8%for the bedrocks overlain by clay were predicted for a 2500-year return period earthquake due to the bedrock depth changes of 200 m,300 m,400 m,500 m.Large-magnitude earthquake of Jakarta city has a significant effect on an increase or a decrease of the PSA value with depth of bedrock and may cause the vibration damage to buildings and other constructions on the ground.The analysis of the PSA value and PSA ratio influenced by the PGA value,bedrock depth and local soil conditions will make a contribution to the design of earthquake-safe building for Jakarta city in the future.展开更多
Twenty five vertical electrical sounding using the Schlumberger configuration with current electrode spacing of AB/2 = 100 m were carried out in Hussara, north-eastern, Nigeria. The field data were smoothened and inte...Twenty five vertical electrical sounding using the Schlumberger configuration with current electrode spacing of AB/2 = 100 m were carried out in Hussara, north-eastern, Nigeria. The field data were smoothened and interpreted using IX1D inversion [1] computer software. Secondary resistivity and secondary resistivity derived parameters were used to determine the potential aquifer horizon. Longitudinal conductance map of the third geoelectric layer indicates a higher conducting zone along the eastern part which may indicate possible concentration of weathered materials. Intermediate conductance striking from the north to the southeast may constitute a horizon with increased aquifer materials, while the lower conductivity values may indicate areas of fractured bedrock where the degree of decomposition of the rock fragments is minimal. The transverse resistance map of the same horizon revealed the contour values increasing from the west towards the east perhaps due to the increasing presence of fresh bedrock close to the surface.展开更多
Distributed temperature sensing is known to provide sharp signals which are very efficient for mapping hydraulically active fractures in wellbores. High-resolution temperature sensing has specifically demonstrated its...Distributed temperature sensing is known to provide sharp signals which are very efficient for mapping hydraulically active fractures in wellbores. High-resolution temperature sensing has specifically demonstrated its capacity to characterize very low flows in wellbores. But as sharp as they can be, temperature profiles are often difficult to decipher. The aim of the present work is to provide and to test the “Borehole Heat Budget Calculator” (BHB Calculator), which is implemented as a fast and easy to use tool for the quantitative analysis of depth-temperature profiles. The Calculator is suitable for most pumping and draining configurations, as the heat budget is generalized for modelling multidirectional flow systems within the same wellbore. The formatted worksheet allows the quick exploitation of temperature logs, and is applicable for the characterization of distributed fractures in long screened wellbores. Objectives of the heat modelling are to enhance the readability of complex depth-temperature data, as well as to quantify distribution of inflow intensities and temperatures with depth. The use of heat budget helps to clearly visualize how heat conduction and heat advection contributions are distributed along wellbores profiles. Calculations of inflow temperatures and their evolution through pumping duration is a prerequisite to infer about the nature of aquifer properties (i.e. conduits, distributed or discrete fractures, porous media), as well as to give insight information about the mapping of effective flow paths draining the aquifer. The efficiency and limitations of the BHB Calculator are being tested through high-resolution temperature logging, along with complementary flowmetering and televiewing logging in fractured aquifers located in the St-Lawrence Lowlands, Quebec, Canada.展开更多
A set of adaptable conditions classification of aquifer-protective mining in the Iongwall coalface for shallow coal seams with thin bedrock was put forward to deal with the conflict between water protection and high e...A set of adaptable conditions classification of aquifer-protective mining in the Iongwall coalface for shallow coal seams with thin bedrock was put forward to deal with the conflict between water protection and high efficiency for the mining field in west China. This classification was suitable for shallow coal seams with different thickness and was beneficial to the local environmental protection. Using the 3-Universal Distinct Element Code (3DEC) numerical software, the height of the fractured zones for shallow coal seams with thin bedrock was calculated and analyzed, and its predicting formula was achieved. Meanwhile, according to the lithology and the weathering degree of the shallow coal seam the thickness of the protective layer was determined as 10 m and the overlying water body of loose water-bearing sand for shallow coal seams with thin bedrock was divided into three types, namely, weak, medium and strong. Based on these, the necessary bedrock thickness of the Iongwall coalface for shallow coal seams with thin bedrock was confined according to the different mining height and water yield nature of the overlying loose water-bearing sand. Combined with the present mining status, a set of new methods of adaptable conditions classification of aquifer-protective mining technology in the Iongwall coalface for shallow coal seams with thin bedrock was put forward.展开更多
This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. The strip mining technology was used to protect the village ho...This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. The strip mining technology was used to protect the village houses. The stratum structure control action of mining subsidence was used to design the mining and pillar width. To further raise resources recovery, we adopted the mutative scheme of mining and pillar width. Observation was carried out while mining. Research shows there is feasibility of the strip mining technology to protecting the village buildings of the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. Finally, subsidence parameters of strip mining were obtained. It is the basic data of the strip mining of the coal field at the north of the Yellow River.展开更多
基金funded from 1978 by the SACUGS (South African Committee for the International Union of Geological Sciences)on behalf of the CSIR (Council for scientific and Industrial Research)funding continued through the South African FRD(Foundation for Research and Development)+7 种基金the NRF(National Research Foundation)NRF funding was largely met through the joint SA-German Inkaba yeAfrica programfunded through the Global Change Program of DST(Department of Science and Technology)funded through the Norwegian Research Councilthe Meltzer Fund(University of Bergen)funding from the Centre for Geobiology, University of Bergenfunded through Cor LangereisAndrew Biggin (University Utrecht) by the Dutch ALWNWO (Aarden Levenswetenschappen division of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek)
文摘The Makhonjwa Mountains, traditionally referred to as the Barberton Greenstone Belt, retain an iconic Paleoarchean archive against which numerical models of early earth geodynamics can be tested. We present new geologic and structural maps, geochemical plots, geo- and thermo-chronology, and geophysical data from seven silicic, mafic to ultramafic complexes separated by major shear systems across the southern Makhonjwa Mountains. All reveal signs of modern oceanic back-arc crust and subductionrelated processes. We compare the rates of processes determined from this data and balance these against plate tectonic and plume related models. Robust rates of both horizontal and vertical tectonic processes derived from the Makhonjwa Mountain complexes are similar, well within an order of magnitude, to those encountered across modern oceanic and orogenic terrains flanking Western Pacific-like subduction zones. We conclude that plate tectonics and linked plate-boundary processes were well established by 3.2-3.6 Ga. Our work provides new constraints for modellers with rates of a 'basket' of processes against which to test Paleoarchean geodynamic models over a time period close to the length of the Phanerozoic.
基金financially supported by the Geological Survey Project of China Geological Survey (grant no.1212011014032,1212011220134)
文摘The identification of large-giant bedrock landslides triggered by earthquake aims to the landslide prevention and control. Previous studies have described the basic characteristics, distribution, and the formation mechanism of seismic landslides (Bijan Khazai et al., 2003; Chong Xu et al., 2013; Lewis a. Owen et al., 2008; Randall W. Jibson et al., 2006). However, few researches have focused on the early identification indicators of large-giant bedrock landslides triggered by earthquake (David k. Keefer., 1984; Janusz Wasowski et al., 2011; Alexander L.Strom., 2009; Patrick Meunier et al., 2008; Shahriar Vahdani et al., 2002; Bijan Khazai et al., 2003). This paper presents the identification indicators of large-giant bedrock landslides triggered by earthquake in the Longmenshan tectonic belt on the basic of their characteristics, distribution and the relationship between seismic landslides and the peak ground motion acceleration.
基金funded by the Major Program of National Natural Science Foundation of China(No.41790431)。
文摘Subsurface stormflow is a dominant runoff mechanism in steep humid mountainous areas.An insite measurement of subsurface stormflow suggests that the bedrock surface plays an important role in the runoff generation and routing process,which was rarely adopted in hydrological modelling studies.To improve the runoff simulation performance,the bedrock surface topographic index is introduced,and a modified TOPMODEL based on the bedrock surface topographic index is developed to simulate the runoff.The modified TOPMODEL is applied to the Huangbengliu(HBL),a steep watershed in Gongga Mountain,and proved to be more appropriate for the HBL watershed,especially for peak simulation.The Nash-Sutcliffe model efficiency(NSE)is improved from 0.24 to 0.58 in the calibration period and from 0.40 to 0.62 in the verification period.The result of this study can advance the understanding of the mechanism of flash floods and contribute flood control and disaster prevention in the HBL watershed and similar areas.
文摘The highest volcano in Mexico,at the same time the third largest mountain in North America(Citlaltépetl,5610 m a.s.l.),is home to the largest glacier in the country.Because of the extinction of the Popocatépetl glacier(5500 m a.s.l.)caused by eruptive activity,and the almost disappearance of the Iztaccíhuatl glaciers(5220 m a.s.l.)due to the lower elevation of the mountain,the Glaciar Norte of Citlatépetl has been the only glacier that has shown a certain degree of stability as a response to the altitude in which it is located.However,as occurs in almost all glaciers on the planet,the retreat of its glacier terminus has been continuous.Furthermore,during the last years the thickness of its upper part began to decrease rapidly until its bedrock was exposed for the first time in 2019.Due to its ecosystem importance and because it is the main glacier in Mexico,as well as the only one in the world located at latitude 19°N,in this work its current dimensions are updated,as well as the local climatology that governs the current state of the glacier is pointed out.The study was based on the analysis of high-resolution Sentinel-2 optical images,as well as through Sentinel-1 SAR images,with the support of climatological information from the study area.Therefore,the outcropping of the bedrock in the accumulation zone and the consequent horizontal retreat of the upper part of the glacier are documented;at the same time,the decrease in the thickness of the ice along it is noted.The rocky outcrop in the accumulation zone suggests that the flow dynamics of the ice towards the ablation zone will be considerably less,accelerating the retreat of the glacier terminus.Finally,the ascent of the glacial front to 5102 m a.s.l.and the modelled altitude of the equilibrium line to 5276 m a.s.l.are reported as a warning signal in terms of snow catchment and mass balance;likewise,the decrease of 23%of its surface is also indicated regarding the surface reduction monitoring that has been done until 2017.These findings may indicate that the future of this glacier is related to its possible extinction sooner than previously thought,with severe environmental consequences,especially in terms of the provision of drinking water for thousands of inhabitants of the slopes of the volcano.This research is expected to help reflect on the impacts of current climate variability and at the same time serve as a reference for the tropical glaciers on the planet.
文摘For a safe extracting of the mine resource of the razor thin capping rock, a study of waterproof, sand prevention, roof fall prevention must be made. As a result, it’s necessary to master the engineering feature of weathering zone of bedrock. According to the lithology appraisal and X diffract analyses, the mineral feature of weathering zone of bedrock in 810 producing area has been studied in this article. By testing the physical mechanics index of weathering zone, we have found out some features of physical mechanic quality. Utilizing the determined result of viscosity index and slaking test, we reach a conclusion of the water stability of weathering zone, that is the weathering zone rock belongs to the type that is easily slaked when encountered water and the water stability is weak.
基金the National Major Project of Science and Technology in developing great oil&gas field and coal bed gas(Grant No.2016ZX05007-006)the Study on water-cut control and production stabilization in the old gasfields and efficient development in new gasfields in Qaidam Basin(Grant No.2016E-0106GF)。
文摘The bedrock weathered crust in front of the Altun Mountains in the Qaidam Basin,western China,is different from others because this is a salt-lake basin,where saline water fluid infiltrates and is deposited in the overlying strata.A large amount of gypsum infills the bedrock weathered crust,and this has changed the pore structure.Using core observation,polarized light microscopy,electron probe,physical property analysis and field emission scanning electron microscopy experiments,the characteristics of the weathered bedrock have been studied.There are cracks and a small number of dissolved pores in the interior of the weathered crust.Matrix micropores are widely developed,especially the various matrix cracks formed by tectonics and weathering,as well as the stress characteristics of small dissolved pores,and physical properties such as porosity and permeability.This‘dual structure’developed in the bedrock is important for guiding the exploration of the lake basin bedrock for natural gas.
文摘The Huron River consists of alternating bedrock reaches and alluvial reaches. Analysis of historical aerial photography from 1950-2015 reveals six major channel avulsion events in the 8-km study area. These avulsions occurred in the alluvial reaches but were strongly influenced by the properties of the upstream bedrock reach (“inherited characteristics”). The bedrock reaches aligned with the azimuth of joint sets in the underlying bedrock. One inherited characteristic in the alluvial reach downstream is that the avulsion channels diverged only slightly from the orientation of the upstream bedrock channel (range 2 °- 38 °, mean and standard deviation 12.1 °± 13.7 °). A second inherited characteristic is that avulsion channels were initiated from short distances downstream after exiting the upstream bedrock channel reach (range 62 - 266 m, mean and standard deviation 143.7 ± 71.0 m), which is a fraction of the meander wavelength (1.2 km). Field evidence shows that some avulsion channel sites were re-occupied episodically. In addition, two properties were necessary for channel avulsions: 1) avulsion events were triggered by channel-forming hydrologic events (5-year recurrence interval flows), but not every channel-forming hydrologic event resulted in an avulsion, and 2) channel sinuosity (P) increased to 1.72 - 1.77 prior to an avulsion then decreased to 1.65 - 1.70 following an avulsion, suggesting that P ≥ 1.72 is the “critical sinuosity” or triggering value for avulsions on the Huron River. In summary, for this river consisting of alternating bedrock and alluvial reaches, the bedrock reaches impose certain parameters on downstream alluvial reaches (including sediment supply, channel direction and avulsion channel position downstream after exiting a bedrock reach) while adjustments in sinuosity and sediment storage occur in the alluvial reaches.
文摘Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11 89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map.
基金Projects NCET-05-0480 supported by the Program for New Century Excellent Talents in University07KF09 by the 2007 Research Fund of the State Key Laboratory of Coal Resources and Mine Safety
文摘The room and pillar method is usually used to extract coal from shallowly buried seams with thin bedrock. This results in a very low production efficiency and in a low degree of extraction. In recent years short-wall continuous mechanical mining has been extensively used in many situations except shallowly buried coal seams with thin bedrock. The principles governing movement of the overlying strata above the 2-2 coal seam were deduced from in-situ experience, laboratory data, calculations and computer simulations. The thicknesses of the bedrock in the Shendong Coal Field where the coal is shallowly buried are classified into 5 types: <10 m, 10–15 m, 15–25 m, 25–35 m and >35 m, which was done using fuzzy clustering results. A series of reasonable, relative parameters in each category have been calculated and analyzed. One proposed way to perform short-wall continuous mechanical mining in shallowly buried coal seams is given. This is significant for coal mines with similar geological conditions.
基金funded through the support of the Swedish Transport Administration through Better Interactions in Geotechnics(BIG)the Rock engineering Research Foundation(BeFo)Tyrens AB。
文摘Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.
基金Project supported by the National Natural Science Foundation of China (No. 50478081).
文摘The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved by employing the technology of Hankel transform. By taking into account the boundary conditions, the dual integral equations of torsional vibration of a rigid circular plate are established, which are further converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficients of the foundation on saturated stratum, the contact shear stress under the foundation and the angular amplitude of the foundation are evaluated. Numerical results indicate that, when the dimensionless height is bigger than 5, saturated stratum overlaying bedrock can be treated as saturated half space approximately. When the dimensionless frequency is low, the permeability of the soil must be taken into account. Furthermore, when the vibration frequency is a constant, the height of the saturated stratum has a slight effect on the dimensionless contact shear stress under the foundation.
文摘The present work focuses on the volcanic basement rock geochemistry of Mount Makabaï(MarouaCameroon city)in relation to groundwater geochemistry.Investigations were centered on an approach involving an association of several methods such as geological cartography,hydrogeology,and geochemistry.Three rock samples,four disturbed soil samples,three undisturbed soil samples,and 20 samples of groundwater in 10 wells were collected during fieldwork and prepared for laboratory analyses.Bedrocks exhibit porphyritic,aphyric,and subaphiric textures.The phenocryst phases are mainly olivine,clinopyroxene,and plagioclase.Based on whole rock major element chemical compositions,the Makabaï samples,plotted on Na_(2)O+K_(2)O versus SiO_(2)diagram,are mugearite,hawaiite,and basalt.The ratio of(MgO+CaO)/(Na_(2)O+K_(2)O)exceeds unity and shows dominance of alkaline Earth metals(MgO:2.99-4.48%;CaO:6.19-9.80%)relatively to alkali metals(Na_(2)O:2.27-4.46%;K_(2)O:2.09-2.51%).Exchangeable base contents are high,mostly represented by Ca and Mg,whose contents vary from 14.6 to 35.28 cmol(+)kg^(-1)and from 3.28 to9.48 cmol(+)kg^(-1)respectively.The CECclayis likewise high,fluctuating between 116.80 and181.38 cmol(+)kg^(-1),values in line with the presence of 2:1 clay minerals represented in the study area by montmorillonite.In the water samples,the Ca2+and Na+contents are generally higher than K^(+)and Mg^(2+),reflecting the relative abundance of Na_(2)O and CaO oxides to K_(2)O and MgO oxides in rocks where different waters were sampled.The waters of Makabaï are acidic to neutral(6.3≤pH≤7.4)and weakly to highly mineralized(110.0≤EC≤1190.0μS/cm).Hydro-geochemical classification by using the Piper diagram revealed two water types:(1)CaMg-HCO_(3)(40%)and(2)CaMg-Cl or CaMg-SO4(60%).The average content of ions in all the analyzed samples was HCO_(3)^(-)>>NO_(3)^(-)>SO_(4)^(2-)>Cl-for anions and Ca^(2+)>>Mg^(2+)>Na^(+)>K^(+)for cations.Major mechanisms governing ionic constituents of groundwater in the study area are water-rock interactions,silicate weathering,and ion exchange.
基金the financial support from the Universitas Syiah Kuala and Ministry of Research,Technology and Higher Education,Indonesia,for Professors Research Scheme Grant No.268/UN11/SPK/PNBP/2020 awarded to MMTon Duc Thang University,Vietnam,for Research Funding Contract No.551/2019/TDT-HDLV-NCV awarded to MAF
文摘Site condition and bedrock depth play important roles in the determination of peak surface acceleration(PSA)values by earthquake motions.The soil parameters of shear wave velocity(Vs)and standard penetration test-number(N)value for Jakarta city are available up to 100 m below the Earth’s surface even though the typical depths to bedrock are in excess of 100 m.This study referred to the base motion peak ground acceleration(PGA)values of 0.100 g,0.218 g and 0.378 g to predict the PSA values using the Nonlinear Earthquake site Response Analysis(NERA)to analyse a simulated dataset for the bedrock depths of 100 m,200 m,300 m,400 m and 500 m with conditioned by clayey and sandy soils.A new empirical equation of Vs=102.48 N0.297(m/s)was proposed to calculate the values of Vsused as an input parameter in the NERA programme for the prediction of seismic wave propagation.The results showed that the PSA values are dependent on the amplitude of seismic waves,depths of bedrock and the local site conditions.Changes in the PSA values from 41.0%to 51.5%and from 46.1%to 79.8%for the bedrocks overlain by sand,from 20.0%to 42.1%and from 45.9%to 58.8%for the bedrocks overlain by clay with increasing of bedrock depths from 200 m to 300 m and from 400 m to 500 m,respectively,were predicted for a 2500-year return period earthquake.Decreases in the PSA values by 41.0%,51.5%,46.1%,79.8%for the bedrocks overlain by sand and by 20.0%,42.1%,45.9%,58.8%for the bedrocks overlain by clay were predicted for a 2500-year return period earthquake due to the bedrock depth changes of 200 m,300 m,400 m,500 m.Large-magnitude earthquake of Jakarta city has a significant effect on an increase or a decrease of the PSA value with depth of bedrock and may cause the vibration damage to buildings and other constructions on the ground.The analysis of the PSA value and PSA ratio influenced by the PGA value,bedrock depth and local soil conditions will make a contribution to the design of earthquake-safe building for Jakarta city in the future.
文摘Twenty five vertical electrical sounding using the Schlumberger configuration with current electrode spacing of AB/2 = 100 m were carried out in Hussara, north-eastern, Nigeria. The field data were smoothened and interpreted using IX1D inversion [1] computer software. Secondary resistivity and secondary resistivity derived parameters were used to determine the potential aquifer horizon. Longitudinal conductance map of the third geoelectric layer indicates a higher conducting zone along the eastern part which may indicate possible concentration of weathered materials. Intermediate conductance striking from the north to the southeast may constitute a horizon with increased aquifer materials, while the lower conductivity values may indicate areas of fractured bedrock where the degree of decomposition of the rock fragments is minimal. The transverse resistance map of the same horizon revealed the contour values increasing from the west towards the east perhaps due to the increasing presence of fresh bedrock close to the surface.
文摘Distributed temperature sensing is known to provide sharp signals which are very efficient for mapping hydraulically active fractures in wellbores. High-resolution temperature sensing has specifically demonstrated its capacity to characterize very low flows in wellbores. But as sharp as they can be, temperature profiles are often difficult to decipher. The aim of the present work is to provide and to test the “Borehole Heat Budget Calculator” (BHB Calculator), which is implemented as a fast and easy to use tool for the quantitative analysis of depth-temperature profiles. The Calculator is suitable for most pumping and draining configurations, as the heat budget is generalized for modelling multidirectional flow systems within the same wellbore. The formatted worksheet allows the quick exploitation of temperature logs, and is applicable for the characterization of distributed fractures in long screened wellbores. Objectives of the heat modelling are to enhance the readability of complex depth-temperature data, as well as to quantify distribution of inflow intensities and temperatures with depth. The use of heat budget helps to clearly visualize how heat conduction and heat advection contributions are distributed along wellbores profiles. Calculations of inflow temperatures and their evolution through pumping duration is a prerequisite to infer about the nature of aquifer properties (i.e. conduits, distributed or discrete fractures, porous media), as well as to give insight information about the mapping of effective flow paths draining the aquifer. The efficiency and limitations of the BHB Calculator are being tested through high-resolution temperature logging, along with complementary flowmetering and televiewing logging in fractured aquifers located in the St-Lawrence Lowlands, Quebec, Canada.
基金Supported by National Natural Science Foundation of China(50904063)the 2007 Research Fund of the State Key Laboratory of Coal Resources and Mine Safety(07KF09)Scientific Research Foundation of China University of Mining & Technology(2008A003,2005B002)
文摘A set of adaptable conditions classification of aquifer-protective mining in the Iongwall coalface for shallow coal seams with thin bedrock was put forward to deal with the conflict between water protection and high efficiency for the mining field in west China. This classification was suitable for shallow coal seams with different thickness and was beneficial to the local environmental protection. Using the 3-Universal Distinct Element Code (3DEC) numerical software, the height of the fractured zones for shallow coal seams with thin bedrock was calculated and analyzed, and its predicting formula was achieved. Meanwhile, according to the lithology and the weathering degree of the shallow coal seam the thickness of the protective layer was determined as 10 m and the overlying water body of loose water-bearing sand for shallow coal seams with thin bedrock was divided into three types, namely, weak, medium and strong. Based on these, the necessary bedrock thickness of the Iongwall coalface for shallow coal seams with thin bedrock was confined according to the different mining height and water yield nature of the overlying loose water-bearing sand. Combined with the present mining status, a set of new methods of adaptable conditions classification of aquifer-protective mining technology in the Iongwall coalface for shallow coal seams with thin bedrock was put forward.
文摘This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. The strip mining technology was used to protect the village houses. The stratum structure control action of mining subsidence was used to design the mining and pillar width. To further raise resources recovery, we adopted the mutative scheme of mining and pillar width. Observation was carried out while mining. Research shows there is feasibility of the strip mining technology to protecting the village buildings of the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. Finally, subsidence parameters of strip mining were obtained. It is the basic data of the strip mining of the coal field at the north of the Yellow River.