The Huron River consists of alternating bedrock reaches and alluvial reaches. Analysis of historical aerial photography from 1950-2015 reveals six major channel avulsion events in the 8-km study area. These avulsions ...The Huron River consists of alternating bedrock reaches and alluvial reaches. Analysis of historical aerial photography from 1950-2015 reveals six major channel avulsion events in the 8-km study area. These avulsions occurred in the alluvial reaches but were strongly influenced by the properties of the upstream bedrock reach (“inherited characteristics”). The bedrock reaches aligned with the azimuth of joint sets in the underlying bedrock. One inherited characteristic in the alluvial reach downstream is that the avulsion channels diverged only slightly from the orientation of the upstream bedrock channel (range 2 °- 38 °, mean and standard deviation 12.1 °± 13.7 °). A second inherited characteristic is that avulsion channels were initiated from short distances downstream after exiting the upstream bedrock channel reach (range 62 - 266 m, mean and standard deviation 143.7 ± 71.0 m), which is a fraction of the meander wavelength (1.2 km). Field evidence shows that some avulsion channel sites were re-occupied episodically. In addition, two properties were necessary for channel avulsions: 1) avulsion events were triggered by channel-forming hydrologic events (5-year recurrence interval flows), but not every channel-forming hydrologic event resulted in an avulsion, and 2) channel sinuosity (P) increased to 1.72 - 1.77 prior to an avulsion then decreased to 1.65 - 1.70 following an avulsion, suggesting that P ≥ 1.72 is the “critical sinuosity” or triggering value for avulsions on the Huron River. In summary, for this river consisting of alternating bedrock and alluvial reaches, the bedrock reaches impose certain parameters on downstream alluvial reaches (including sediment supply, channel direction and avulsion channel position downstream after exiting a bedrock reach) while adjustments in sinuosity and sediment storage occur in the alluvial reaches.展开更多
文摘The Huron River consists of alternating bedrock reaches and alluvial reaches. Analysis of historical aerial photography from 1950-2015 reveals six major channel avulsion events in the 8-km study area. These avulsions occurred in the alluvial reaches but were strongly influenced by the properties of the upstream bedrock reach (“inherited characteristics”). The bedrock reaches aligned with the azimuth of joint sets in the underlying bedrock. One inherited characteristic in the alluvial reach downstream is that the avulsion channels diverged only slightly from the orientation of the upstream bedrock channel (range 2 °- 38 °, mean and standard deviation 12.1 °± 13.7 °). A second inherited characteristic is that avulsion channels were initiated from short distances downstream after exiting the upstream bedrock channel reach (range 62 - 266 m, mean and standard deviation 143.7 ± 71.0 m), which is a fraction of the meander wavelength (1.2 km). Field evidence shows that some avulsion channel sites were re-occupied episodically. In addition, two properties were necessary for channel avulsions: 1) avulsion events were triggered by channel-forming hydrologic events (5-year recurrence interval flows), but not every channel-forming hydrologic event resulted in an avulsion, and 2) channel sinuosity (P) increased to 1.72 - 1.77 prior to an avulsion then decreased to 1.65 - 1.70 following an avulsion, suggesting that P ≥ 1.72 is the “critical sinuosity” or triggering value for avulsions on the Huron River. In summary, for this river consisting of alternating bedrock and alluvial reaches, the bedrock reaches impose certain parameters on downstream alluvial reaches (including sediment supply, channel direction and avulsion channel position downstream after exiting a bedrock reach) while adjustments in sinuosity and sediment storage occur in the alluvial reaches.
基金中国科学院战略性先导科技专项项目(批准号:XDB03020200)和国家自然科学基金项目(批准号:41272215、41272196、41590861和41661134011)共同资助致谢美国俄勒冈州立大学(OSU)EricKirby副教授在坡度一面积对数图、Chi-plot和裂点溯源迁移模型等方面给予一定指导以色列班固利恩大学(Ben-Gurion University of the Negev)Liran Goren博士在线性非稳态水力侵蚀方程求解方面给予很大帮助+1 种基金匿名审稿专家提出的宝贵意见对于本文的提高大有裨益编辑杨美芳老师对文章的完善付出辛勤劳动.在此一并致以诚挚的谢意.