使用人工蜂群算法实现对基于Mie散射理论的小角前向散射法的颗粒系粒径多峰分布的反演,并进行仿真和实验.对服从正态分布、Rosin-Rammler分布、Johnson’s S B分布函数的均匀球形颗粒系进行仿真.分别模拟了单峰、双峰和三峰分布的颗粒群...使用人工蜂群算法实现对基于Mie散射理论的小角前向散射法的颗粒系粒径多峰分布的反演,并进行仿真和实验.对服从正态分布、Rosin-Rammler分布、Johnson’s S B分布函数的均匀球形颗粒系进行仿真.分别模拟了单峰、双峰和三峰分布的颗粒群,人工蜂群算法均能较好地实现颗粒粒径的反演.在单峰分布时,颗粒重量频率分布曲线的相对均方根误差低至3.53×10^-8.与独立模式Philip-Twomey-NNLS算法和Chahine算法相比,人工蜂群算法的仿真反演精度更高,其双峰宽分布的颗粒重量频率分布曲线的相对均方根误差分别由3.38%和2.70%降至1.53%,且随着峰数增多、分布曲线宽度变窄和噪声增加,Philip-Twomey-NNLS算法和Chahine算法的误差分别增加至44.99%和24.36%,而人工蜂群算法的误差为18.22%.搭建小角前向散射法颗粒测量系统,分别采集国家标准颗粒35μm单一颗粒群和30μm、51μm混合颗粒群的散射图像进行实验研究,均得到较高精度的反演结果,与Philip-Twomey-NNLS算法相比,其特征粒径的相对误差可降低50%左右,特征参数的相对误差在5%以内.展开更多
基金Natural Science Foundation of China(51706093)Natural Science Foundation of Jiangsu Province(BK20181308)Fundamental Research Funds for the Central Universities(2018B45414)。
文摘使用人工蜂群算法实现对基于Mie散射理论的小角前向散射法的颗粒系粒径多峰分布的反演,并进行仿真和实验.对服从正态分布、Rosin-Rammler分布、Johnson’s S B分布函数的均匀球形颗粒系进行仿真.分别模拟了单峰、双峰和三峰分布的颗粒群,人工蜂群算法均能较好地实现颗粒粒径的反演.在单峰分布时,颗粒重量频率分布曲线的相对均方根误差低至3.53×10^-8.与独立模式Philip-Twomey-NNLS算法和Chahine算法相比,人工蜂群算法的仿真反演精度更高,其双峰宽分布的颗粒重量频率分布曲线的相对均方根误差分别由3.38%和2.70%降至1.53%,且随着峰数增多、分布曲线宽度变窄和噪声增加,Philip-Twomey-NNLS算法和Chahine算法的误差分别增加至44.99%和24.36%,而人工蜂群算法的误差为18.22%.搭建小角前向散射法颗粒测量系统,分别采集国家标准颗粒35μm单一颗粒群和30μm、51μm混合颗粒群的散射图像进行实验研究,均得到较高精度的反演结果,与Philip-Twomey-NNLS算法相比,其特征粒径的相对误差可降低50%左右,特征参数的相对误差在5%以内.