Because of environmental constraints,beef cattle was for more than a century the only viable farming option in the extensive semiarid and subhumid lands of Argentina and the main source of nutrients for humans as well...Because of environmental constraints,beef cattle was for more than a century the only viable farming option in the extensive semiarid and subhumid lands of Argentina and the main source of nutrients for humans as well.However,a growing concern and criticism have risen today about its possible negative impact on the climate and the environment.These worries tend to affect current public opinions,national policies,and international trade.Based on 40 beef cattle farms scattered across different semiarid and subhumid regions of Argentina,here we evaluated the impact of extensive cattle production on carbon,water,and nutrient pollution.Life-Cycle Assessment(LCA)and Land-Based Assessment(LBA)were the two approaches we used here to compare the environmental impact of beef production.While the environmental footprint(EF)resulting from LCA expresses the impact per unit of food,the environmental balance(EB),derived from LBA,aims at quantifying the impact per unit of land.As such,the EB considers both negative and positive impacts on the farm as an integrated system.Following standardized procedures,we evaluated EF and EB up to the farm gate,leaving aside delocalized post-farm impacts such as those of processing,packaging,and transportation that occur beyond the farm gate.In agreement with previous evidence,our results show that the EF tends to decrease as per-head production increases.Correlation coefficients and statistical significance were the following for carbon(R=−0.574;p<0.01),water(R=−0.561;p<0.01),and N(R=−0.704;p<0.01)and Phosphorus(P)pollution(R=−0.802;p<0.01)footprints.On the contrary,the EB seems to be highly sensitive,and as per-hectare beef production increases.Correlations were the following for carbon emissions(CE:R=0.955;p<0.01),water consumption(WC:R=0.822;p<0.01),nitrogen excretion(NE:R=0.948;p<0.01)and phosphorus excretion(PE:R=0.945;p<0.01).What our results suggest is that the notion of EF is useful to evaluate the environmental impact in intensive beef production systems,and the EB is suitable to assess the impact of the extensive ones.In practice,both approaches provide different perspectives on the environmental-impact problem and they should be complementary used.We concluded that the methodological rigidity of EF does not allow proper discrimination among farms in the extensive systems.On the contrary,the EB approach tended to be highly sensitive to detecting differences between individual farms and farmers,thus allowing the identification of successful options for extensive beef production in terms of public image,policy-making,and commercial opportunities.展开更多
Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote grow...Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harmless bacteria, but also opportunistic pathogens that may acquire and propagate resistance genes within the microbial community via horizontal gene transfer. Antimicrobial-resistant bovine pathogens can also complicate the prevention and treatment of infectious diseases in beef feedlots,threatening the efficiency of the beef production system. Likewise, the transmission of antimicrobial resistance genes to bovine-associated human pathogens is a potential public health concern. This review outlines current antimicrobial use practices pertaining to beef production, and explores the frequency of antimicrobial resistance in major bovine pathogens. The effect of antimicrobials on the composition of the bovine microbiota is examined, as are the effects on the beef production resistome. Antimicrobial resistance is further explored within the context of the wider beef production continuum, with emphasis on antimicrobial resistance genes in the food chain, and risk to the human population.展开更多
Background:Oil palm is a tropical crop with worldwide plantings approaching 20 million ha and large areas in Indonesia,Malaysia and Thailand.The plantations are readily managed as silvopastoral systems incorporating c...Background:Oil palm is a tropical crop with worldwide plantings approaching 20 million ha and large areas in Indonesia,Malaysia and Thailand.The plantations are readily managed as silvopastoral systems incorporating cattle grazing(Oil Palm Silvopastoral System for Cattle,OPSC)but there is a need for analytical tools and data to understand system herbage supply and feed conversion efficiency(FCE).Methods:Metabolic energy budgeting was used to estimate herbage harvested by cattle in three OPSC subsystems,9 and 12 years after oil palm establishment,and FCE of the subsystems was determined.Understorey herbage was also analysed for nutritive value,botanical composition and herbage accumulation within one grazing‐regrowth cycle.Results:The herbage‐harvested estimate was 2.0−2.4 t dry matter(DM)ha^(-1) year^(-1) for 9 year old subsystems and 1.4-1.7 tDMha^(-1) year^(-1) for a 12 year old subsystem.Herbage metabolisable energy(ME)was 8.3−8.5 MJ kg^(-1) DM and crude protein(CP)was 15%-16%DM.FCE values for subsystems ranged from 32 to 94 kg DM kg^(-1) liveweight‐gain.Conclusions:Herbage DM yield is declining,while herbage ME is marginal but CP is adequate.FCE is suboptimal but can be optimised by defining the trajectory of declining herbage production with canopy closure as plantations age and matching stocking rate to herbage supply using a comparativestocking‐rate‐type statistic.展开更多
[Objective] To study the effects of plant oil mixture on production performance, carcass and beef quality in beef cattle. [Method] Single-factor randomized blocks design was used. Sixteen healthy Yanbian yellow bulls ...[Objective] To study the effects of plant oil mixture on production performance, carcass and beef quality in beef cattle. [Method] Single-factor randomized blocks design was used. Sixteen healthy Yanbian yellow bulls having close body weight were selected and randomly divided into four groups, four cattle per group. Been oil, safflower oil and sunflower oil were mixed respectively at a volume ratio of 11:5:4. The oil blend was added to the daily diets of beef cattle respectively at a proportion of 4%, 5% and 6%. The effects of the plant oil mixture on production performance, carcass and beef quality were investigated. [ Result.] Compared with the control cattle, the experimental cattle had significantly lower feed intake (P 〈 0.05), non-significantly higher efficiency of feed utilization, and significantly lower digestibility of crude fiber and calcium (P 〈 0.05). With the increasing level of plant oil, the digestibility of dry matter showed a decreasing trend. The digestibility of dry matter was significantly lower in the cattle fed on the plant oil mixture at a level of 6% than in the control ( P 〈 0.05). The plant oil mixture had no effect on the digestibility of crude protein, ether extract, crude ash, nitrogen-free extract and phosphorus. With the increasing level of plant oil, the serum content of high-density lipoprotein showed an increasing trend. The serum content of high-density lipoprotein was significantly higher in the cattle fed on the plant oil mixture at a level of 6% than in the control ( P 〈 0.05). With the increasing level of plant oil, the content of total cholesterol showed an increasing trend, whereas the content of low-density lipoprotein showed a decreasing trend. Moreover, other indicators did not change significantly. The experimental cattle had larger eye muscle area and better beef quality than the control group. The content of crude protein and ether extract in beef increased with the increasing level of plant oil. [ Conclusion] The plant oil mixture added to the daily feed decreases intake and digestibility of crude fiber and calcium but has no remarkable effect on production performance of beef cattle. The addition also increases eye muscle area and improves beef quality, thereby improving quality of carcass and beef. The proportion of the plant oil mixture should be added at a proportion lower than 5%.展开更多
Early removal of the calf from its dam reduces forage needs of the cow-calf enterprise and has been found to improve BW gain and pregnancy rates in the cow herd. However, early weaning may not always be economically v...Early removal of the calf from its dam reduces forage needs of the cow-calf enterprise and has been found to improve BW gain and pregnancy rates in the cow herd. However, early weaning may not always be economically viable for producers and the risk should be considered carefully. This study was conducted to evaluate the effect of early and normal weaning of steer and heifer calves on net income at weaning. Calves from Angus xHereforddams were randomly assigned to one of two weaning treatments. Calves were either early weaned (EW) at 80-d of age or remained with their dams until normal weaning (NW) at 213-d of age. Calves assigned to EW treatment received a 17.5% crude protein and 0.82 Mcal/kg net energy diet for approximately 130-d in a drylot. All economic analyses were conducted at normal weaning for both NW and EW calves. At normal weaning, price of steers ($US/kg) was lower (P = 0.003) and weaned steer value ($US/steer) was greater (P P = 0.18) was found in price of heifers ($US/kg) and weaned heifer value ($US/heifer) between NW and EW heifers. Feed cost was increased (P < 0.001) in EW steers and heifers compared to NW calves. Net revenue for both weaned steers and heifers was reduced (P < 0.001) in EW calves due to the feed cost of the growing diet. This study indicates that early weaning calves at 80-d of age decrease weaned calf value and net revenue for the cow-calf segment.展开更多
In this study,the effects of two types of premixed materials with different combinations of trace elements on the production performance and antioxidant capacity of simmental beef cattle were examined.Fifteen healthy ...In this study,the effects of two types of premixed materials with different combinations of trace elements on the production performance and antioxidant capacity of simmental beef cattle were examined.Fifteen healthy simmental beef cattle of similar weight(approximately 330 kg),the same age(12 months),without castration,and a good physique were divided into three groups,with five beef cattle in each group.Food of Group Ⅰ beef cattle was supplemented with a commercially marketed 5% compound trace element premixture for fine beef cattle.Food of Group Ⅱ beef cattle was supplemented with a 5% compound microelement premixture for beef cattle that was designed to address local nutrient deficiencies and surpluses.In the blank control group,the beef cattle were not fed a premixture.The pretest period was 15 days,and the test period was divided into prefattening(45 days)and postfattening(45 days)stages.Body weight and body size indices were recorded at 1,2 and 3 months,and blood samples were collected regularly.In Group Ⅰ,the daily weight gain increased significantly by 15.7% compared with that of the control group.The largest daily weight gain was in Group Ⅱ,which increased by 31.6% compared with that in the control.During the test period of 90 days,the body size indices of the three different groups increased in different months,with significant increases in the indices for both test groups compared with those of the control.In Group Ⅰ,the activity of CP,the total activity of SOD and Cu-Zn-SOD increased significantly(p<0.05)compared with those in the control group,with a highly significant increase observed in GSH-PX activity(p<0.01).In Group Ⅱ,the increases in the activity of CP and the total activity of SOD and Cu-Zn-SOD were highly significant compared with those in the control group(p<0.01).In addition,a significant increase was observed in GSH-PX activity(p<0.05).Based on pretest results,the concentrations of Cu,Zn,Mo,Mn,Se and Co in the blood of experimental beef cattle were lower than those of the normal range.After feeding for 90 days,the concentrations of Cu,Zn,Mo,Mn,Se and Co in the blood of Groups Ⅰ and Ⅱ were significantly higher than those in the control group(p<0.05).The concentrations of elements in the blood of Group Ⅱ were close to the appropriate levels.Thus,the effects of the specifically designed compound microelement premixture on the prevention of nutrient imbalances and control of beef cattle nutrition metabolism and the production of fattened beef cattle were significant.展开更多
This paper presents the lessons learnt from a research project titled “Improving Beef Cattle Productivity for Enhanced Food Security and Efficient Utilization of Natural Resources in the Lake Victoria Basin” which i...This paper presents the lessons learnt from a research project titled “Improving Beef Cattle Productivity for Enhanced Food Security and Efficient Utilization of Natural Resources in the Lake Victoria Basin” which includes Tanzania, Uganda and Rwanda. The key focus is on the implications of land use land cover change and climate variability on the future prospects of beef cattle production in this region. The study utilizes information and data from natural resources and climate components to deduce the impact of land use and land cover changes on climate variability. Additional analysis is conducted to summarize the land use and land cover data to carry out analysis on climate data using the Mann-Kendal test, linear regression and moving averages to reveal patterns of change and trends in annual and seasonal rainfall and temperature. The findings reveal that the study areas of Rwanda, Uganda and Tanzania in the Lake Victoria Basin (LVB) have changed over time following land cover manipulations and land use change, coupled with climate variability. The grazing land has been converted to agriculture and settlements, thereby reducing cattle grazing land which is the cheapest and major feed source for ruminant livestock production. Although the cattle population has been on the increase in the same period, it has been largely attributed to the fact that the carrying capacity of available grazing areas had not been attained. The current stocking rates in the LVB reveal that the rangelands are greatly overstocked and overgrazed with land degradation already evidenced in some areas. Climate variability coupled with a decrease in grazing resources is driving unprecedented forage scarcity which is now a major limiting factor to cattle production. Crop cultivation and settlement expansion are major land use types overtaking grazing lands;therefore the incorporation of crop residues into ruminant feeding systems could be a feasible way to curtail rangeland degradation and increase beef cattle production.展开更多
文摘Because of environmental constraints,beef cattle was for more than a century the only viable farming option in the extensive semiarid and subhumid lands of Argentina and the main source of nutrients for humans as well.However,a growing concern and criticism have risen today about its possible negative impact on the climate and the environment.These worries tend to affect current public opinions,national policies,and international trade.Based on 40 beef cattle farms scattered across different semiarid and subhumid regions of Argentina,here we evaluated the impact of extensive cattle production on carbon,water,and nutrient pollution.Life-Cycle Assessment(LCA)and Land-Based Assessment(LBA)were the two approaches we used here to compare the environmental impact of beef production.While the environmental footprint(EF)resulting from LCA expresses the impact per unit of food,the environmental balance(EB),derived from LBA,aims at quantifying the impact per unit of land.As such,the EB considers both negative and positive impacts on the farm as an integrated system.Following standardized procedures,we evaluated EF and EB up to the farm gate,leaving aside delocalized post-farm impacts such as those of processing,packaging,and transportation that occur beyond the farm gate.In agreement with previous evidence,our results show that the EF tends to decrease as per-head production increases.Correlation coefficients and statistical significance were the following for carbon(R=−0.574;p<0.01),water(R=−0.561;p<0.01),and N(R=−0.704;p<0.01)and Phosphorus(P)pollution(R=−0.802;p<0.01)footprints.On the contrary,the EB seems to be highly sensitive,and as per-hectare beef production increases.Correlations were the following for carbon emissions(CE:R=0.955;p<0.01),water consumption(WC:R=0.822;p<0.01),nitrogen excretion(NE:R=0.948;p<0.01)and phosphorus excretion(PE:R=0.945;p<0.01).What our results suggest is that the notion of EF is useful to evaluate the environmental impact in intensive beef production systems,and the EB is suitable to assess the impact of the extensive ones.In practice,both approaches provide different perspectives on the environmental-impact problem and they should be complementary used.We concluded that the methodological rigidity of EF does not allow proper discrimination among farms in the extensive systems.On the contrary,the EB approach tended to be highly sensitive to detecting differences between individual farms and farmers,thus allowing the identification of successful options for extensive beef production in terms of public image,policy-making,and commercial opportunities.
基金supported by an NSERC Postdoctoral Fellowshipsupported by the Beef Cattle Research Council BCRC–Agriculture and Agri-Food Canada beef cluster
文摘Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harmless bacteria, but also opportunistic pathogens that may acquire and propagate resistance genes within the microbial community via horizontal gene transfer. Antimicrobial-resistant bovine pathogens can also complicate the prevention and treatment of infectious diseases in beef feedlots,threatening the efficiency of the beef production system. Likewise, the transmission of antimicrobial resistance genes to bovine-associated human pathogens is a potential public health concern. This review outlines current antimicrobial use practices pertaining to beef production, and explores the frequency of antimicrobial resistance in major bovine pathogens. The effect of antimicrobials on the composition of the bovine microbiota is examined, as are the effects on the beef production resistome. Antimicrobial resistance is further explored within the context of the wider beef production continuum, with emphasis on antimicrobial resistance genes in the food chain, and risk to the human population.
基金The Government of Malaysia through Universiti Malaysia Sabah and the Ministry of Higher Education of Malaysia,Grant/Award Numbers:GKP0019‐STWN‐2016,SDK0010‐2017。
文摘Background:Oil palm is a tropical crop with worldwide plantings approaching 20 million ha and large areas in Indonesia,Malaysia and Thailand.The plantations are readily managed as silvopastoral systems incorporating cattle grazing(Oil Palm Silvopastoral System for Cattle,OPSC)but there is a need for analytical tools and data to understand system herbage supply and feed conversion efficiency(FCE).Methods:Metabolic energy budgeting was used to estimate herbage harvested by cattle in three OPSC subsystems,9 and 12 years after oil palm establishment,and FCE of the subsystems was determined.Understorey herbage was also analysed for nutritive value,botanical composition and herbage accumulation within one grazing‐regrowth cycle.Results:The herbage‐harvested estimate was 2.0−2.4 t dry matter(DM)ha^(-1) year^(-1) for 9 year old subsystems and 1.4-1.7 tDMha^(-1) year^(-1) for a 12 year old subsystem.Herbage metabolisable energy(ME)was 8.3−8.5 MJ kg^(-1) DM and crude protein(CP)was 15%-16%DM.FCE values for subsystems ranged from 32 to 94 kg DM kg^(-1) liveweight‐gain.Conclusions:Herbage DM yield is declining,while herbage ME is marginal but CP is adequate.FCE is suboptimal but can be optimised by defining the trajectory of declining herbage production with canopy closure as plantations age and matching stocking rate to herbage supply using a comparativestocking‐rate‐type statistic.
文摘[Objective] To study the effects of plant oil mixture on production performance, carcass and beef quality in beef cattle. [Method] Single-factor randomized blocks design was used. Sixteen healthy Yanbian yellow bulls having close body weight were selected and randomly divided into four groups, four cattle per group. Been oil, safflower oil and sunflower oil were mixed respectively at a volume ratio of 11:5:4. The oil blend was added to the daily diets of beef cattle respectively at a proportion of 4%, 5% and 6%. The effects of the plant oil mixture on production performance, carcass and beef quality were investigated. [ Result.] Compared with the control cattle, the experimental cattle had significantly lower feed intake (P 〈 0.05), non-significantly higher efficiency of feed utilization, and significantly lower digestibility of crude fiber and calcium (P 〈 0.05). With the increasing level of plant oil, the digestibility of dry matter showed a decreasing trend. The digestibility of dry matter was significantly lower in the cattle fed on the plant oil mixture at a level of 6% than in the control ( P 〈 0.05). The plant oil mixture had no effect on the digestibility of crude protein, ether extract, crude ash, nitrogen-free extract and phosphorus. With the increasing level of plant oil, the serum content of high-density lipoprotein showed an increasing trend. The serum content of high-density lipoprotein was significantly higher in the cattle fed on the plant oil mixture at a level of 6% than in the control ( P 〈 0.05). With the increasing level of plant oil, the content of total cholesterol showed an increasing trend, whereas the content of low-density lipoprotein showed a decreasing trend. Moreover, other indicators did not change significantly. The experimental cattle had larger eye muscle area and better beef quality than the control group. The content of crude protein and ether extract in beef increased with the increasing level of plant oil. [ Conclusion] The plant oil mixture added to the daily feed decreases intake and digestibility of crude fiber and calcium but has no remarkable effect on production performance of beef cattle. The addition also increases eye muscle area and improves beef quality, thereby improving quality of carcass and beef. The proportion of the plant oil mixture should be added at a proportion lower than 5%.
文摘Early removal of the calf from its dam reduces forage needs of the cow-calf enterprise and has been found to improve BW gain and pregnancy rates in the cow herd. However, early weaning may not always be economically viable for producers and the risk should be considered carefully. This study was conducted to evaluate the effect of early and normal weaning of steer and heifer calves on net income at weaning. Calves from Angus xHereforddams were randomly assigned to one of two weaning treatments. Calves were either early weaned (EW) at 80-d of age or remained with their dams until normal weaning (NW) at 213-d of age. Calves assigned to EW treatment received a 17.5% crude protein and 0.82 Mcal/kg net energy diet for approximately 130-d in a drylot. All economic analyses were conducted at normal weaning for both NW and EW calves. At normal weaning, price of steers ($US/kg) was lower (P = 0.003) and weaned steer value ($US/steer) was greater (P P = 0.18) was found in price of heifers ($US/kg) and weaned heifer value ($US/heifer) between NW and EW heifers. Feed cost was increased (P < 0.001) in EW steers and heifers compared to NW calves. Net revenue for both weaned steers and heifers was reduced (P < 0.001) in EW calves due to the feed cost of the growing diet. This study indicates that early weaning calves at 80-d of age decrease weaned calf value and net revenue for the cow-calf segment.
基金Supported by the National Science and Technology Support Program Project(2011BAD47B04)
文摘In this study,the effects of two types of premixed materials with different combinations of trace elements on the production performance and antioxidant capacity of simmental beef cattle were examined.Fifteen healthy simmental beef cattle of similar weight(approximately 330 kg),the same age(12 months),without castration,and a good physique were divided into three groups,with five beef cattle in each group.Food of Group Ⅰ beef cattle was supplemented with a commercially marketed 5% compound trace element premixture for fine beef cattle.Food of Group Ⅱ beef cattle was supplemented with a 5% compound microelement premixture for beef cattle that was designed to address local nutrient deficiencies and surpluses.In the blank control group,the beef cattle were not fed a premixture.The pretest period was 15 days,and the test period was divided into prefattening(45 days)and postfattening(45 days)stages.Body weight and body size indices were recorded at 1,2 and 3 months,and blood samples were collected regularly.In Group Ⅰ,the daily weight gain increased significantly by 15.7% compared with that of the control group.The largest daily weight gain was in Group Ⅱ,which increased by 31.6% compared with that in the control.During the test period of 90 days,the body size indices of the three different groups increased in different months,with significant increases in the indices for both test groups compared with those of the control.In Group Ⅰ,the activity of CP,the total activity of SOD and Cu-Zn-SOD increased significantly(p<0.05)compared with those in the control group,with a highly significant increase observed in GSH-PX activity(p<0.01).In Group Ⅱ,the increases in the activity of CP and the total activity of SOD and Cu-Zn-SOD were highly significant compared with those in the control group(p<0.01).In addition,a significant increase was observed in GSH-PX activity(p<0.05).Based on pretest results,the concentrations of Cu,Zn,Mo,Mn,Se and Co in the blood of experimental beef cattle were lower than those of the normal range.After feeding for 90 days,the concentrations of Cu,Zn,Mo,Mn,Se and Co in the blood of Groups Ⅰ and Ⅱ were significantly higher than those in the control group(p<0.05).The concentrations of elements in the blood of Group Ⅱ were close to the appropriate levels.Thus,the effects of the specifically designed compound microelement premixture on the prevention of nutrient imbalances and control of beef cattle nutrition metabolism and the production of fattened beef cattle were significant.
文摘This paper presents the lessons learnt from a research project titled “Improving Beef Cattle Productivity for Enhanced Food Security and Efficient Utilization of Natural Resources in the Lake Victoria Basin” which includes Tanzania, Uganda and Rwanda. The key focus is on the implications of land use land cover change and climate variability on the future prospects of beef cattle production in this region. The study utilizes information and data from natural resources and climate components to deduce the impact of land use and land cover changes on climate variability. Additional analysis is conducted to summarize the land use and land cover data to carry out analysis on climate data using the Mann-Kendal test, linear regression and moving averages to reveal patterns of change and trends in annual and seasonal rainfall and temperature. The findings reveal that the study areas of Rwanda, Uganda and Tanzania in the Lake Victoria Basin (LVB) have changed over time following land cover manipulations and land use change, coupled with climate variability. The grazing land has been converted to agriculture and settlements, thereby reducing cattle grazing land which is the cheapest and major feed source for ruminant livestock production. Although the cattle population has been on the increase in the same period, it has been largely attributed to the fact that the carrying capacity of available grazing areas had not been attained. The current stocking rates in the LVB reveal that the rangelands are greatly overstocked and overgrazed with land degradation already evidenced in some areas. Climate variability coupled with a decrease in grazing resources is driving unprecedented forage scarcity which is now a major limiting factor to cattle production. Crop cultivation and settlement expansion are major land use types overtaking grazing lands;therefore the incorporation of crop residues into ruminant feeding systems could be a feasible way to curtail rangeland degradation and increase beef cattle production.