The brewing characteristics of three kinds of beer yeasts commonly used in the market were compared and studied.The results showed that the three kinds of yeasts had different characteristics and slightly different fe...The brewing characteristics of three kinds of beer yeasts commonly used in the market were compared and studied.The results showed that the three kinds of yeasts had different characteristics and slightly different fermentation degrees,but the fermentation speeds all were higher and the diacetyl reduction ability was excellent.The finished beers were golden yellow in appearance,rich and delicate in foam,pleasant in aroma,mellow in body and similar in physicochemical indexes,all in line with domestic beer standards.展开更多
As per tradition from hundreds of years the Koloi tribes of Tripura are preparing “Gora”-therice based fermented beer which is very good in taste and aroma applying their traditional indigenous brewing techniques. I...As per tradition from hundreds of years the Koloi tribes of Tripura are preparing “Gora”-therice based fermented beer which is very good in taste and aroma applying their traditional indigenous brewing techniques. In this study, an attempt has been made to identify the indigenous yeast which is the main causative agent for fermentation and to investigate its fermentation ability with an industrial Saccharomyces cerevisiaes train. After investigation based on culture dependent phenotypic characteristics like-staining and biochemical characterization, primarily the responsible yeast species was determined as Pichia kudriavzevii and further confirmed followed by 18S rRNA ribotyping and the sequences was deposited at Gene bank and NCBI bearing specific accession number. In the comparative analysis, it has been found a significant similarities in all aspects of nutritional and alcohol percentages with the industrial strain in laboratory condition. The alcohol percentage in the rice beer “Gora” measured 6.40 ± 0.008% v/v. The study may be the first scientific investigation of its kind about this indigenous yeast strain isolated from “Gora” of this Indo-Burma biodiversity region and may provide sufficient background and potentiality for promoting these kinds of indigenous alcoholic beverages for small scale commercialization to strengthen the rural livelihood as well as to maintain immaterial cultural heritage.展开更多
为了进一步研究微生物富硒的能力,得到富硒能力较强的啤酒酵母,以啤酒酵母WX-01为出发菌,通过高浓度亚硒酸钠初筛,再经过常压室温等离子体(atmospheric and room temperature plasma,ARTP)诱变处理以及亚硒酸钠抗性平板筛选,观察菌株的...为了进一步研究微生物富硒的能力,得到富硒能力较强的啤酒酵母,以啤酒酵母WX-01为出发菌,通过高浓度亚硒酸钠初筛,再经过常压室温等离子体(atmospheric and room temperature plasma,ARTP)诱变处理以及亚硒酸钠抗性平板筛选,观察菌株的生长状况结合对其生物量与硒含量的测定,选育出一株富硒优势啤酒酵母。通过培养条件为添加质量浓度35 mg/L,加硒时间8 h,培养时间36 h,得到的酵母WX-1的生物量提高到(5192±36)mg/L,较原始菌株WX-01提高了201%,硒含量达到(1475±33)μg/g,较原始菌株提高了330%,其有机硒产量和转化率分别为7658μg/L和97.1%。扫描电镜分析酵母菌富集后表面有少量单质硒析出。另外红外光谱在特定区域出现不同强度的吸收峰表明酵母细胞参与了硒蛋白的合成。展开更多
金属硫蛋白(metallothionein,MT)MT3是人体中参与重金属解毒的主要蛋白,前期研究表明啤酒酵母(Saccharomyces c erevisiae)α因子信号肽(MF-α)介导重组蛋白EGFP分泌到植物体外。但是目前还没有研究报道转基因植物中过量表达分泌型MT3...金属硫蛋白(metallothionein,MT)MT3是人体中参与重金属解毒的主要蛋白,前期研究表明啤酒酵母(Saccharomyces c erevisiae)α因子信号肽(MF-α)介导重组蛋白EGFP分泌到植物体外。但是目前还没有研究报道转基因植物中过量表达分泌型MT3对植物重金属镉(Cd)的富集能力是否有影响。本研究通过人工方法合成MF-α信号肽、增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)和MT3的融合基因MF-α-EGFP-MT3,构建该融合基因的植物表达载体pK-35S-MF-α-EGFP-MT3,转化野生型(WT)烟草和天竺葵获得转基因植物。通过电化学方法检测转基因植物MT3转录水平、转基因植物根系分泌液中EGFP-MT3蛋白的水平。用Cd溶液处理转基因植物,通过表型观察和电化学方法检测根、茎和叶中Cd的含量。结果表明,转基因烟草和天竺葵中都有MT3基因的转录;且根系分泌EGFP-MT3蛋白的量大约为0.45~0.68 mg·g-1(以鲜质量计)。100μmol·L-1的Cd溶液处理转基因烟草植株,表型变化分析发现转基因植株受损情况低于WT,近根部叶片叶绿素含量显著高于WT,说明EGFP-MT3的分泌可降低Cd的毒害作用。转基因烟草植株根、茎和叶片对Cd的富集量比WT高约40%。用50μmol·L-1的Cd溶液处理转基因天竺葵植株,结果表明转基因植株根对Cd的富集量比WT高约30%,茎对Cd的富集量比WT高约4倍。以上结果证明过量表达EGFP-MT3可以提高转基因烟草和天竺葵对Cd的富集能力,可能是EGFP-MT3分泌根系表面增加转基因植物根系对Cd的吸附作用,同时在转基因植物组织细胞内积累的EGFP-MT3也可增加植物组织对Cd的富集作用。展开更多
基金Supported by the Foundation for Outstanding Young Scientist in Shandong Province
文摘The brewing characteristics of three kinds of beer yeasts commonly used in the market were compared and studied.The results showed that the three kinds of yeasts had different characteristics and slightly different fermentation degrees,but the fermentation speeds all were higher and the diacetyl reduction ability was excellent.The finished beers were golden yellow in appearance,rich and delicate in foam,pleasant in aroma,mellow in body and similar in physicochemical indexes,all in line with domestic beer standards.
文摘As per tradition from hundreds of years the Koloi tribes of Tripura are preparing “Gora”-therice based fermented beer which is very good in taste and aroma applying their traditional indigenous brewing techniques. In this study, an attempt has been made to identify the indigenous yeast which is the main causative agent for fermentation and to investigate its fermentation ability with an industrial Saccharomyces cerevisiaes train. After investigation based on culture dependent phenotypic characteristics like-staining and biochemical characterization, primarily the responsible yeast species was determined as Pichia kudriavzevii and further confirmed followed by 18S rRNA ribotyping and the sequences was deposited at Gene bank and NCBI bearing specific accession number. In the comparative analysis, it has been found a significant similarities in all aspects of nutritional and alcohol percentages with the industrial strain in laboratory condition. The alcohol percentage in the rice beer “Gora” measured 6.40 ± 0.008% v/v. The study may be the first scientific investigation of its kind about this indigenous yeast strain isolated from “Gora” of this Indo-Burma biodiversity region and may provide sufficient background and potentiality for promoting these kinds of indigenous alcoholic beverages for small scale commercialization to strengthen the rural livelihood as well as to maintain immaterial cultural heritage.
文摘为了进一步研究微生物富硒的能力,得到富硒能力较强的啤酒酵母,以啤酒酵母WX-01为出发菌,通过高浓度亚硒酸钠初筛,再经过常压室温等离子体(atmospheric and room temperature plasma,ARTP)诱变处理以及亚硒酸钠抗性平板筛选,观察菌株的生长状况结合对其生物量与硒含量的测定,选育出一株富硒优势啤酒酵母。通过培养条件为添加质量浓度35 mg/L,加硒时间8 h,培养时间36 h,得到的酵母WX-1的生物量提高到(5192±36)mg/L,较原始菌株WX-01提高了201%,硒含量达到(1475±33)μg/g,较原始菌株提高了330%,其有机硒产量和转化率分别为7658μg/L和97.1%。扫描电镜分析酵母菌富集后表面有少量单质硒析出。另外红外光谱在特定区域出现不同强度的吸收峰表明酵母细胞参与了硒蛋白的合成。
文摘金属硫蛋白(metallothionein,MT)MT3是人体中参与重金属解毒的主要蛋白,前期研究表明啤酒酵母(Saccharomyces c erevisiae)α因子信号肽(MF-α)介导重组蛋白EGFP分泌到植物体外。但是目前还没有研究报道转基因植物中过量表达分泌型MT3对植物重金属镉(Cd)的富集能力是否有影响。本研究通过人工方法合成MF-α信号肽、增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)和MT3的融合基因MF-α-EGFP-MT3,构建该融合基因的植物表达载体pK-35S-MF-α-EGFP-MT3,转化野生型(WT)烟草和天竺葵获得转基因植物。通过电化学方法检测转基因植物MT3转录水平、转基因植物根系分泌液中EGFP-MT3蛋白的水平。用Cd溶液处理转基因植物,通过表型观察和电化学方法检测根、茎和叶中Cd的含量。结果表明,转基因烟草和天竺葵中都有MT3基因的转录;且根系分泌EGFP-MT3蛋白的量大约为0.45~0.68 mg·g-1(以鲜质量计)。100μmol·L-1的Cd溶液处理转基因烟草植株,表型变化分析发现转基因植株受损情况低于WT,近根部叶片叶绿素含量显著高于WT,说明EGFP-MT3的分泌可降低Cd的毒害作用。转基因烟草植株根、茎和叶片对Cd的富集量比WT高约40%。用50μmol·L-1的Cd溶液处理转基因天竺葵植株,结果表明转基因植株根对Cd的富集量比WT高约30%,茎对Cd的富集量比WT高约4倍。以上结果证明过量表达EGFP-MT3可以提高转基因烟草和天竺葵对Cd的富集能力,可能是EGFP-MT3分泌根系表面增加转基因植物根系对Cd的吸附作用,同时在转基因植物组织细胞内积累的EGFP-MT3也可增加植物组织对Cd的富集作用。