期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Use of a Digital Image Correlation Technique for Measuring the Material Properties of Beetle Wing 被引量:4
1
作者 Tailie Jin Nam Seo Goo +1 位作者 Sung-Choong Woo Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第3期224-231,共8页
Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present ... Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa. 展开更多
关键词 digital image correlation technique beetle wing elastic modulus Poisson's ratio VEIN MEMBRANE
下载PDF
Structural Characteristics of Allomyrina Dichotoma Beetle's Hind Wings for Flapping Wing Micro Air Vehicle 被引量:3
2
作者 Ngoc San Ha Quang Tri Truong Hoang Vu Phan Nam Seo Goo Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第2期226-235,共10页
In this study, we present a complete structural analysis ofAllomyrina dichotoma beetle's hind wings by investigating their static and dynamic characteristics. The wing was subjected to the static loading to determine... In this study, we present a complete structural analysis ofAllomyrina dichotoma beetle's hind wings by investigating their static and dynamic characteristics. The wing was subjected to the static loading to determine its overall flexural stiffness. Dy- namic characteristics such as natural frequency, mode shape, and damping ratio of vibration modes in the operating frequency range were determined using a Bruel & Kjaer fast Fourier transform analyzer along with a laser sensor. The static and dynamic characteristics of natural Allomyrina dichotoma beetle's hind wings were compared to those of a fabricated artificial wing. The results indicate that natural frequencies of the natural wing were significantly correlated to the wing surface area density that was defined as the wing mass divided by the hind wing surface area. Moreover, the bending behaviors of the natural wing and artificial wing were similar to that of a cantilever beam. Furthermore, the flexural stiffness of the artificial wing was a little higher than that of the natural one whereas the natural frequency of the natural wing was close to that of the artificial wing. These results provide important information for the biomimetic design of insect-scale artificial wings, with which highly ma- neuverable and efficient micro air vehicles can be designed. 展开更多
关键词 beetle hind wing flexural stiffness natural frequency mode shape Micro Air Vehicles (MAVs)
原文传递
Design and Demonstration of Insect Mimicking Foldable Artificial Wing Using Four-Bar Linkage Systems 被引量:5
3
作者 Quang-Tri Truong Byoma Wing Argyoganendro Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第3期449-458,共10页
In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuratio... In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuration unless it is exhausted. The artificial wing has to be able to maintain a fully unfolded configuration while flapping at a desirable flapping frequency. The artificial foldable hind wing developed in this work is based on two four-bar linkages which adapt the behaviors of the beetle's hind wing. The four-bar-linkages are designed to mimic rotational motion of the wing base and the vein folding/unfolding motion of the beetle's hind wing. The behavior of the artificial wings, which are installed in a flapping-wing system, is observed using a high-speed camera. The observation shows that the wing could maintain a fully unfolded configuration during flapping motion. A series of thrust measurements are also conducted to estimate the force generated by the flapping-wing system with foldable artificial wings. Although the artificial foldable wings give added burden to the flapping-wing system because of its weight, the thrust measurement results show that the flapping-wing system could still generate reasonable thrust. 展开更多
关键词 beetle's hind wing folding/unfolding motion flapping-wing system foldable wing four-bar linkage configuration thrust measurement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部