Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology us...Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxiaUy into the molten pool by the laser beam to fabricate fuUy dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft part has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed.展开更多
The 6D pose estimation is important for the safe take-off and landing of the aircraft using a single RGB image. Due to the large scene and large depth, the exiting pose estimation methods have unstratified performance...The 6D pose estimation is important for the safe take-off and landing of the aircraft using a single RGB image. Due to the large scene and large depth, the exiting pose estimation methods have unstratified performance on the accuracy. To achieve precise 6D pose estimation of the aircraft, an end-to-end method using an RGB image is proposed. In the proposed method, the2D and 3D information of the keypoints of the aircraft is used as the intermediate supervision,and 6D pose information of the aircraft in this intermediate information will be explored. Specifically, an off-the-shelf object detector is utilized to detect the Region of the Interest(Ro I) of the aircraft to eliminate background distractions. The 2D projection and 3D spatial information of the pre-designed keypoints of the aircraft is predicted by the keypoint coordinate estimator(Kp Net).The proposed method is trained in an end-to-end fashion. In addition, to deal with the lack of the related datasets, this paper builds the Aircraft 6D Pose dataset to train and test, which captures the take-off and landing process of three types of aircraft from 11 views. Compared with the latest Wide-Depth-Range method on this dataset, our proposed method improves the average 3D distance of model points metric(ADD) and 5° and 5 m metric by 86.8% and 30.1%, respectively. Furthermore, the proposed method gets 9.30 ms, 61.0% faster than YOLO6D with 23.86 ms.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 50331010)
文摘Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxiaUy into the molten pool by the laser beam to fabricate fuUy dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft part has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed.
基金co-supported by the Key research and development plan project of Sichuan Province,China(No.2022YFG0153).
文摘The 6D pose estimation is important for the safe take-off and landing of the aircraft using a single RGB image. Due to the large scene and large depth, the exiting pose estimation methods have unstratified performance on the accuracy. To achieve precise 6D pose estimation of the aircraft, an end-to-end method using an RGB image is proposed. In the proposed method, the2D and 3D information of the keypoints of the aircraft is used as the intermediate supervision,and 6D pose information of the aircraft in this intermediate information will be explored. Specifically, an off-the-shelf object detector is utilized to detect the Region of the Interest(Ro I) of the aircraft to eliminate background distractions. The 2D projection and 3D spatial information of the pre-designed keypoints of the aircraft is predicted by the keypoint coordinate estimator(Kp Net).The proposed method is trained in an end-to-end fashion. In addition, to deal with the lack of the related datasets, this paper builds the Aircraft 6D Pose dataset to train and test, which captures the take-off and landing process of three types of aircraft from 11 views. Compared with the latest Wide-Depth-Range method on this dataset, our proposed method improves the average 3D distance of model points metric(ADD) and 5° and 5 m metric by 86.8% and 30.1%, respectively. Furthermore, the proposed method gets 9.30 ms, 61.0% faster than YOLO6D with 23.86 ms.