Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-...Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-scale users under the constraints of limited physical resources. In a container-based virtualization environment, container networking is an important component. To evaluate the impact of different networking methods between the containers on the simulation performance, the typical container networking methods such as none, bridge, macvlan were analyzed, and the performance of different networking methods was evaluated according to the throughput and latency metrics. The experiments show that under the same physical resource constraints, the macvlan networking method has the best network performance, while the bridge method has the worst performance. This result provides a reference for selecting the appropriate networking method in the user behavior simulation process.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related in...The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition.展开更多
This paper explores the uses’ influences on microblog. At first, according to the social network theory, we present an analysis of information transmitting network structure based on the relationship of following and...This paper explores the uses’ influences on microblog. At first, according to the social network theory, we present an analysis of information transmitting network structure based on the relationship of following and followed phenomenon of microblog users. Informed by the microblog user behavior analysis, the paper also addresses a model for calculating weights of users’ influence. It proposes a U-R model, using which we can evaluate users’ influence based on PageRank algorithms and analyzes user behaviors. In the U-R model, the effect of user behaviors is explored and PageRank is applied to evaluate the importance and the influence of every user in a microblog network by repeatedly iterating their own U-R value. The users’ influences in a microblog network can be ranked by the U-R value. Finally, the validity of U-R model is proved with a real-life numerical example.展开更多
The problem of privacy in social networks is well documented within literature;users have pri- vacy concerns however, they consistently disclose their sensitive information and leave it open to unintended third partie...The problem of privacy in social networks is well documented within literature;users have pri- vacy concerns however, they consistently disclose their sensitive information and leave it open to unintended third parties. While numerous causes of poor behaviour have been suggested by re- search the role of the User Interface (UI) and the system itself is underexplored. The field of Per- suasive Technology would suggest that Social Network Systems persuade users to deviate from their normal or habitual behaviour. This paper makes the case that the UI can be used as the basis for user empowerment by informing them of their privacy at the point of interaction and remind- ing them of their privacy needs. The Theory of Planned Behaviour is introduced as a potential theoretical foundation for exploring the psychology behind privacy behaviour as it describes the salient factors that influence intention and action. Based on these factors of personal attitude, subjective norms and perceived control, a series of UIs are presented and implemented in con- trolled experiments examining their effect on personal information disclosure. This is combined with observations and interviews with the participants. Results from this initial, pilot experiment suggest groups with privacy salient information embedded exhibit less disclosure than the control group. This work reviews this approach as a method for exploring privacy behaviour and propos- es further work required.展开更多
Based on the problem that the service entity only has the partial field of vision in the network environment,a trust evolvement method of the macro self-organization for Web service combination was proposed.In the met...Based on the problem that the service entity only has the partial field of vision in the network environment,a trust evolvement method of the macro self-organization for Web service combination was proposed.In the method,the control rule of the trust degree in the Dempster-Shafer(D-S)rule was utilized based on the entity network interactive behavior,and a proportion trust control rule was put up.The control rule could make the Web service self-adaptively study so as to gradually form a proper trust connection with its cooperative entities and to improve the security performance of the whole system.The experimental results show that the historical successful experience is saved during the service combination alliance,and the method can greatly improve the reliability and success rate of Web service combination.展开更多
In order to quickly and accurately find the implementer of the network crime,based on the user portrait technology,a rapid detection method for users with abnormal behaviors is proposed.This method needs to construct ...In order to quickly and accurately find the implementer of the network crime,based on the user portrait technology,a rapid detection method for users with abnormal behaviors is proposed.This method needs to construct the abnormal behavior rule base on various kinds of abnormal behaviors in advance,and construct the user portrait including basic attribute tags,behavior attribute tags and abnormal behavior similarity tags for network users who have abnormal behaviors.When a network crime occurs,firstly get the corresponding tag values in all user portraits according to the category of the network crime.Then,use the Naive Bayesian method matching each user portrait,to quickly locate the most likely network criminal suspects.In the case that no suspect is found,all users are audited comprehensively through matching abnormal behavior rule base.The experimental results show that,the accuracy rate of using this method for fast detection of network crimes is 95.9%,and the audit time is shortened to 1/35 of that of the conventional behavior audit method.展开更多
Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network cap...Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.展开更多
Purpose: In the Web 2.0 era,leveraging the collective power of user knowledge contributions has become an important part of the study of collective intelligence. This research aims to investigate the factors which inf...Purpose: In the Web 2.0 era,leveraging the collective power of user knowledge contributions has become an important part of the study of collective intelligence. This research aims to investigate the factors which influence knowledge contribution behavior of social networking sites(SNS) users.Design/methodology/approach: The data were obtained from an online survey of 251 social networking sites users. Structural equation modeling analysis was used to validate the proposed model.Findings: Our survey shows that the individuals' motivation for knowledge contribution,their capability of contributing knowledge,interpersonal trust and their own habits positively influence their knowledge contribution behavior,but reward does not significantly influence knowledge contribution in the online virtual community.Research limitations: Respondents of our online survey are mainly undergraduate and graduate students. A limited sample group cannot represent all of the population. A larger survey involving more SNS users may be useful.Practical implications: The results have provided some theoretical basis for promoting knowledge contribution and user viscosity.Originality/value: Few studies have investigated the impact of social influence and user habits on knowledge contribution behavior of SNS users. This study can make a theoretical contribution by examining how the social influence processes and habits affect one's knowledge contribution behavior using online communities.展开更多
The article tries to discover the major authors in the field of information seeking behavior via social network analysis. It is to be accomplished through a literature review and also by focusing on a graphic map show...The article tries to discover the major authors in the field of information seeking behavior via social network analysis. It is to be accomplished through a literature review and also by focusing on a graphic map showing the seven most productive coauthors in this field. Based on these seven authors' work, five probable research directions about information seeking behavior are discerned and presented.展开更多
文摘Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-scale users under the constraints of limited physical resources. In a container-based virtualization environment, container networking is an important component. To evaluate the impact of different networking methods between the containers on the simulation performance, the typical container networking methods such as none, bridge, macvlan were analyzed, and the performance of different networking methods was evaluated according to the throughput and latency metrics. The experiments show that under the same physical resource constraints, the macvlan networking method has the best network performance, while the bridge method has the worst performance. This result provides a reference for selecting the appropriate networking method in the user behavior simulation process.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
基金sponsored by the National Natural Science Foundation of China under grant number No.61100008,61201084the China Postdoctoral Science Foundation under Grant No.2013M541346+3 种基金Heilongiiang Postdoctoral Special Fund(Postdoctoral Youth Talent Program)under Grant No.LBH-TZ0504Heilongjiang Postdoctoral Fund under Grant No.LBH-Z13058the Natural Science Foundation of Heilongjiang Province of China under Grant No.QC2015076The Fundamental Research Funds for the Central Universities of China under grant number HEUCF100602
文摘The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition.
文摘This paper explores the uses’ influences on microblog. At first, according to the social network theory, we present an analysis of information transmitting network structure based on the relationship of following and followed phenomenon of microblog users. Informed by the microblog user behavior analysis, the paper also addresses a model for calculating weights of users’ influence. It proposes a U-R model, using which we can evaluate users’ influence based on PageRank algorithms and analyzes user behaviors. In the U-R model, the effect of user behaviors is explored and PageRank is applied to evaluate the importance and the influence of every user in a microblog network by repeatedly iterating their own U-R value. The users’ influences in a microblog network can be ranked by the U-R value. Finally, the validity of U-R model is proved with a real-life numerical example.
文摘The problem of privacy in social networks is well documented within literature;users have pri- vacy concerns however, they consistently disclose their sensitive information and leave it open to unintended third parties. While numerous causes of poor behaviour have been suggested by re- search the role of the User Interface (UI) and the system itself is underexplored. The field of Per- suasive Technology would suggest that Social Network Systems persuade users to deviate from their normal or habitual behaviour. This paper makes the case that the UI can be used as the basis for user empowerment by informing them of their privacy at the point of interaction and remind- ing them of their privacy needs. The Theory of Planned Behaviour is introduced as a potential theoretical foundation for exploring the psychology behind privacy behaviour as it describes the salient factors that influence intention and action. Based on these factors of personal attitude, subjective norms and perceived control, a series of UIs are presented and implemented in con- trolled experiments examining their effect on personal information disclosure. This is combined with observations and interviews with the participants. Results from this initial, pilot experiment suggest groups with privacy salient information embedded exhibit less disclosure than the control group. This work reviews this approach as a method for exploring privacy behaviour and propos- es further work required.
基金Project(60673169)supported by the National Natural Science Foundation of China
文摘Based on the problem that the service entity only has the partial field of vision in the network environment,a trust evolvement method of the macro self-organization for Web service combination was proposed.In the method,the control rule of the trust degree in the Dempster-Shafer(D-S)rule was utilized based on the entity network interactive behavior,and a proportion trust control rule was put up.The control rule could make the Web service self-adaptively study so as to gradually form a proper trust connection with its cooperative entities and to improve the security performance of the whole system.The experimental results show that the historical successful experience is saved during the service combination alliance,and the method can greatly improve the reliability and success rate of Web service combination.
基金This research is supported by The National Natural Science Foundation of China under Grant(No.61672101)Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(No.ICDDXN004)Key Lab of Information Network Security of Ministry of Public Security(No.C18601).
文摘In order to quickly and accurately find the implementer of the network crime,based on the user portrait technology,a rapid detection method for users with abnormal behaviors is proposed.This method needs to construct the abnormal behavior rule base on various kinds of abnormal behaviors in advance,and construct the user portrait including basic attribute tags,behavior attribute tags and abnormal behavior similarity tags for network users who have abnormal behaviors.When a network crime occurs,firstly get the corresponding tag values in all user portraits according to the category of the network crime.Then,use the Naive Bayesian method matching each user portrait,to quickly locate the most likely network criminal suspects.In the case that no suspect is found,all users are audited comprehensively through matching abnormal behavior rule base.The experimental results show that,the accuracy rate of using this method for fast detection of network crimes is 95.9%,and the audit time is shortened to 1/35 of that of the conventional behavior audit method.
基金Projects(51378119,51578150)supported by the National Natural Science Foundation of China
文摘Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.
基金supported by the National Social Science Foundation of China(Grant Nos.:10CTQ010 and 11CTQ038)Wuhan University Development Program for Researchers Born after the 1970s
文摘Purpose: In the Web 2.0 era,leveraging the collective power of user knowledge contributions has become an important part of the study of collective intelligence. This research aims to investigate the factors which influence knowledge contribution behavior of social networking sites(SNS) users.Design/methodology/approach: The data were obtained from an online survey of 251 social networking sites users. Structural equation modeling analysis was used to validate the proposed model.Findings: Our survey shows that the individuals' motivation for knowledge contribution,their capability of contributing knowledge,interpersonal trust and their own habits positively influence their knowledge contribution behavior,but reward does not significantly influence knowledge contribution in the online virtual community.Research limitations: Respondents of our online survey are mainly undergraduate and graduate students. A limited sample group cannot represent all of the population. A larger survey involving more SNS users may be useful.Practical implications: The results have provided some theoretical basis for promoting knowledge contribution and user viscosity.Originality/value: Few studies have investigated the impact of social influence and user habits on knowledge contribution behavior of SNS users. This study can make a theoretical contribution by examining how the social influence processes and habits affect one's knowledge contribution behavior using online communities.
文摘The article tries to discover the major authors in the field of information seeking behavior via social network analysis. It is to be accomplished through a literature review and also by focusing on a graphic map showing the seven most productive coauthors in this field. Based on these seven authors' work, five probable research directions about information seeking behavior are discerned and presented.