In the theory of belief functions,the evidence combination is a kind of decision-level information fusion.Given two or more Basic Belief Assignments(BBAs)originated from different information sources,the combination r...In the theory of belief functions,the evidence combination is a kind of decision-level information fusion.Given two or more Basic Belief Assignments(BBAs)originated from different information sources,the combination rule is used to combine them to expect a better decision result.When only a combined BBA is given and original BBAs are discarded,if one wants to analyze the difference between the information sources,evidence de-combination is needed to determine the original BBAs.Evidence de-combination can be considered as the inverse process of the information fusion.This paper focuses on such a defusion of information in the theory of belief functions.It is an under-determined problem if only the combined BBA is available.In this paper,two optimization-based approaches are proposed to de-combine a given BBA according to the criteria of divergence maximization and information maximization,respectively.The new proposed approaches can be used for two or more information sources.Some numerical examples and an example of application are provided to illustrate and validate our approaches.展开更多
Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recogn...Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.展开更多
In information fusion,the uncertain information from different sources might be modeled with different theoretical frameworks.When one needs to fuse the uncertain information represented by different uncertainty theor...In information fusion,the uncertain information from different sources might be modeled with different theoretical frameworks.When one needs to fuse the uncertain information represented by different uncertainty theories,constructing the transformation between different frameworks is crucial.Various transformations of a Fuzzy Membership Function(FMF)into a Basic Belief Assignment(BBA)have been proposed,where the transformations based on uncertainty maximization and minimization can determine the BBA without preselecting the focal elements.However,these two transformations that based on uncertainty optimization emphasize the extreme cases of uncertainty.To avoid extreme attitudinal bias,a trade-off or moderate BBA with the uncertainty degree between the minimal and maximal ones is more preferred.In this paper,two moderate transformations of an FMF into a trade-off BBA are proposed.One is the weighted average based transformation and the other is the optimization-based transformation with weighting mechanism,where the weighting factor can be user-specified or determined with some prior information.The rationality and effectiveness of our transformations are verified through numerical examples and classification examples.展开更多
基金supported by the National Natural Science Foundation of China(No.61671370)Project supported by joint foundation of X Lab–the 2~(nd)Academy of CASIC+1 种基金the Postdoctoral Science Foundation of China(No.2016M592790)the Postdoctoral Science Research Foundation of Shaanxi Province,China(No.2016BSHEDZZ46)。
文摘In the theory of belief functions,the evidence combination is a kind of decision-level information fusion.Given two or more Basic Belief Assignments(BBAs)originated from different information sources,the combination rule is used to combine them to expect a better decision result.When only a combined BBA is given and original BBAs are discarded,if one wants to analyze the difference between the information sources,evidence de-combination is needed to determine the original BBAs.Evidence de-combination can be considered as the inverse process of the information fusion.This paper focuses on such a defusion of information in the theory of belief functions.It is an under-determined problem if only the combined BBA is available.In this paper,two optimization-based approaches are proposed to de-combine a given BBA according to the criteria of divergence maximization and information maximization,respectively.The new proposed approaches can be used for two or more information sources.Some numerical examples and an example of application are provided to illustrate and validate our approaches.
文摘Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.
基金supported by the National Natural Science Foundation of China(No.61671370)Postdoctoral Science Foundation of China(No.2016M592790)Postdoctoral Science Research Foundation of Shaanxi Province,China(No.2016BSHEDZZ46)。
文摘In information fusion,the uncertain information from different sources might be modeled with different theoretical frameworks.When one needs to fuse the uncertain information represented by different uncertainty theories,constructing the transformation between different frameworks is crucial.Various transformations of a Fuzzy Membership Function(FMF)into a Basic Belief Assignment(BBA)have been proposed,where the transformations based on uncertainty maximization and minimization can determine the BBA without preselecting the focal elements.However,these two transformations that based on uncertainty optimization emphasize the extreme cases of uncertainty.To avoid extreme attitudinal bias,a trade-off or moderate BBA with the uncertainty degree between the minimal and maximal ones is more preferred.In this paper,two moderate transformations of an FMF into a trade-off BBA are proposed.One is the weighted average based transformation and the other is the optimization-based transformation with weighting mechanism,where the weighting factor can be user-specified or determined with some prior information.The rationality and effectiveness of our transformations are verified through numerical examples and classification examples.