Site conditions and species identity have a combined effect on fine root growth of trees in pure and mixed stands.However,mechanisms that may contribute to this effect are rarely studied,even though they are essential...Site conditions and species identity have a combined effect on fine root growth of trees in pure and mixed stands.However,mechanisms that may contribute to this effect are rarely studied,even though they are essential to assess the potential of species to cope with climate change.This study examined fine root overlap and the linkage between fine root and stem growth of European beech(Fagus sylvatica)growing in pure and mixed stands with Douglas fir(Pseudotsuga menziesii)or Norway spruce(Picea abies)at two different study sites in northwestern Germany.The study sites represented substantially different soil and climate conditions.At each site,three stands,and at each stand,three pairs of trees were studied.In the pure beech stand,the pairs consisted of two beech trees,while in the mixed stands each pair was composed of a beech tree and a conifer.Between each pair,three evenly spaced soil cores were taken monthly throughout the growing season.In the pure beech stands,microsatellite markers were used to assign the fine roots to individual trees.Changes in stem diameter of beech were quantified and then upscaled to aboveground wood productivity with automatic high-resolution circumference dendrometers.We found that fine root overlap between neighboring trees varied independently of the distance between the paired trees or the stand types(pure versus mixed stands),indicating that there was no territorial competition.Aboveground wood productivity(wood NPP)and fine root productivity(root NPP)showed similar unimodal seasonal patterns,peaking in June.However,this pattern was more distinct for root NPP,and root NPP started earlier and lasted longer than wood NPP.The influence of site conditions on the variation in wood and root NPP of beech was stronger than that of stand type.Wood NPP was,as expected,higher at the richer site than at the poorer site.In contrast,root NPP was higher at the poorer than at the richer site.We concluded that beech can respond to limited resources not only above-but also belowground and that the negative relationship between above-and belowground growth across the study sites suggests an‘optimal partitioning’of growth under stress.展开更多
Improving our knowledge of the effects of environmental factors (e.g. soil conditions, precipitation and temperature) on belowground biomass in an alpine grassland is essential for understanding the consequences of ...Improving our knowledge of the effects of environmental factors (e.g. soil conditions, precipitation and temperature) on belowground biomass in an alpine grassland is essential for understanding the consequences of carbon storage in this biome. The object of this study is to investigate the relative importance of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze and Yellow rivers, Tibetan Plateau. Soil organic carbon (SOC), total nitrogen (TN) and total phosphorous (TP) contents and belowground biomass were measured at 22 sampling sites across an alpine meadow on the Tibetan Plateau. We analyzed the data by using the redundancy analysis to determine the main environmental factors affecting the belowground biomass and the contribution of each factor. The results showed that SOC, TN and TP were the main factors that influenced belowground biomass, and the contribution of SOC, TN and TP on biomass was in the range of 47.87%-72.06% at soil depths of 0-30 cm. Moreover, the combined contribution of annual mean temperature (AMT) and mean annual precipitation (MAP) on belowground biomass ranged from 0.92% to 4.10%. A potential mechanism for the differences in belowground biomass was caused by the variations in soil nitrogen and phosphorous, which were coupled with SOC. A significant correlation was observed between MAP and soil nutrients (SOC, TN and TP) at the soil depth of 0-10 cm (P〈0.05). We concluded that precipitation is an important driving force in regulating ecosystem functioning as reflected in variations of soil nutrients (SOC, TN and TP) and dynamics of belowground biomass in alpine grassland ecosystems.展开更多
Intercropping of maize(Zea mays L.) and peanut(Arachis hypogaea L.) often results in greater yields than the respective sole crops. However, there is limited knowledge of aboveground and belowground interspecific inte...Intercropping of maize(Zea mays L.) and peanut(Arachis hypogaea L.) often results in greater yields than the respective sole crops. However, there is limited knowledge of aboveground and belowground interspecific interactions between maize and peanut in field. A two-year field experiment was conducted to investigate the effects of interspecific interactions on plant growth and grain yield for a peanut/maize intercropping system under different nitrogen(N) and phosphorus(P) levels. The method of root separation was employed to differentiate belowground from aboveground interspecific interactions. We observed that the global interspecific interaction effect on the shoot biomass of the intercropping system decreased with the coexistence period, and belowground interaction contributed more than aboveground interaction to advantages of the intercropping in terms of shoot biomass and grain yield. There was a positive effect from aboveground and belowground interspecific interactions on crop plant growth in the intercropping system, except that aboveground interaction had a negative effect on peanut during the late coexistence period. The advantage of intercropping on grain came mainly from increased maize yield(means 95%) due to aboveground interspecific competition for light and belowground interaction(61%–72% vs. 28%–39% in fertilizer treatments). There was a negative effect on grain yield from aboveground interaction for peanut, but belowground interspecific interaction positively affected peanut grain yield.The supply of N, P, or N + P increased grain yield of intercropped maize and the contribution from aboveground interspecific interaction. Our study suggests that the advantages of peanut/maize intercropping for yield mainly comes from aboveground interspecific competition for maize and belowground interspecific facilitation for peanut, and their respective yield can be enhanced by N and P. These findings are important for managing the intercropping system and optimizing the benefits from using this system.展开更多
The association between biodiversity and belowground biomass(BGB) remains a central debate in ecology.In this study, we compared the variations in species richness(SR) and BGB as well as their interaction in the top(0...The association between biodiversity and belowground biomass(BGB) remains a central debate in ecology.In this study, we compared the variations in species richness(SR) and BGB as well as their interaction in the top(0–20 cm), middle(20–50 cm) and deep(50–100 cm) soil depths among 8 grassland types(lowland meadow, temperate desert, temperate desert steppe, temperate steppe desert, temperate steppe, temperate meadow steppe, mountain meadow and alpine steppe) and along environmental gradients(elevation, energy condition(annual mean temperature(AMT) and potential evapotranspiration(PET)), and mean annual precipitation(MAP)) based on a 2011–2013 survey of 379 sites in Xinjiang, Northwest China.The SR and BGB varied among the grassland types.The alpine steppe had a medium level of SR but the highest BGB in the top soil depth, whereas the lowland meadow had the lowest SR but the highest BGB in the middle and deep soil depths.The SR and BGB in the different soil depths were tightly associated with elevation, MAP and energy condition;however, the particular forms of trends in SR and BGB depended on environmental factors and soil depths.The relationship between SR and BGB was unimodal in the top soil depth, but SR was positively related with BGB in the middle soil depth.Although elevation, MAP, energy condition and SR had significant effects on BGB, the variations in BGB in the top soil depth were mostly determined by elevation, and those in the middle and deep soil depths were mainly affected by energy condition.These findings highlight the importance of environmental factors in the regulations of SR and BGB as well as their interaction in the grasslands in Xinjiang.展开更多
This paper quantifies the relationships among community type, peat layer thickness and habitat age of the mangrove forests in Pohnpei Island, Micronesia and provides a discussion concerning the primary succession and ...This paper quantifies the relationships among community type, peat layer thickness and habitat age of the mangrove forests in Pohnpei Island, Micronesia and provides a discussion concerning the primary succession and the belowground carbon storage of the main mangrove community types. The ages of the habitat were estimated from a relationship between the thickness of the mangrove peat layer and the formative period, which was decided by calibrated radiocarbon ages. Mangrove communities in the coral reef type habitat were generally arranged in the following order, from seaward to landward: 1) the Rhizophora stylosa or Sonneratia alba community (I or II communities), 2) the typical subunit of the S. alba subcommunity of the Rhizophora apiculata— Bruguiera gymnorrhiza community (III(2)a subunit) and 3) the Xylocarpus granatum subunit of the same subcommunity of the same community (III(2)b subunit). Their habitat ages were estimated to be younger than 460 years, between 360 and 1070 years and between 860 and 2300 years, respectively. Based on these results and other evidences such as photosynthetic characteristics and pollen analysis derived from the previous studies, the primary succession was inferred to have progressed in the order mentioned above. Belowground stored carbon for the main community types in the coral reef type habitat were estimated to be less than 370 t C ha-1 for the I and the II communities, between 290 and 860 t C ha-1 for the III(2)a subunit and between 700 and 1850 t C ha-1 for the III(2)b subunit.展开更多
大气CO_(2)浓度升高和海平面上升会通过影响植物的分布和生长状况,继而影响湿地的稳定性。地下生物量是调节潮汐湿地生态系统功能的关键因素,包括土壤有机质的积累和湿地海拔高程的维持。本文通过设置开顶式生长箱(OTC:open top chamber...大气CO_(2)浓度升高和海平面上升会通过影响植物的分布和生长状况,继而影响湿地的稳定性。地下生物量是调节潮汐湿地生态系统功能的关键因素,包括土壤有机质的积累和湿地海拔高程的维持。本文通过设置开顶式生长箱(OTC:open top chamber)试验探究不同海拔的3个典型植物群落(SC群落:C_(3)植物为主的群落;MX群落:C_(3)、C_(4)植物混合群落;SP群落:C_(4)植物为主的群落)对CO_(2)浓度升高和海平面上升的响应差异。研究结果显示:CO_(2)浓度升高能够显著增加SC、MX和SP群落的根茎、根和总地下生物量,但年际差异较大。海平面上升显著降低了3个群落植物的根生物量和SC群落高CO_(2)浓度处理下及SP群落对照处理下的总地下生物量,但对根茎却无显著影响。在高盐的条件下,高CO_(2)浓度一定程度上能够缓解高盐分对植物的胁迫,但高CO_(2)浓度的施肥作用下降。对照条件下的SC和MX群落总地下生物量随试验年份延长呈下降趋势,其下降主要是由于海平面的快速上升导致的,而高CO_(2)浓度能减缓其下降趋势,一定程度上抵消胁迫。因此,海平面上升正严重威胁未来湿地的稳定性,而CO_(2)浓度升高能一定程度上缓解海平面上升的危害。展开更多
It is well known that aboveground productivity usually increases with precipitation.However,how belowground carbon(C)processes respond to changes in precipitation remains elusive,although belowground net primary produ...It is well known that aboveground productivity usually increases with precipitation.However,how belowground carbon(C)processes respond to changes in precipitation remains elusive,although belowground net primary productivity(BNPP)represents more than one-half of NPP and soil stores the largest terrestrial C in the biosphere.This paper reviews the patterns of belowground C processes(BNPP and soil C)in response to changes in precipitation from transect studies,manipulative experiments,modeling and data integration and synthesis.The results suggest the possible existence of nonlinear patterns of BNPP and soil C in response to changes in precipitation,which is largely different from linear response for aboveground productivity.C allocation,root turnover time and species composition may be three key processes underlying mechanisms of the nonlinear responses to changes in precipitation for belowground C processes.In addition,microbial community structure and long-term ecosystem processes(e.g.mineral assemblage,soil texture,aggregate stability)may also affect patterns of belowground C processes in response to changes in precipitation.At last,we discuss implications and future perspectives for potential nonlinear responses of belowground C processes to changes in precipitation.展开更多
基金Research Training Group 2300,funded by the German research funding organization(Deutsche Forschungsgemeinschaft–DFG)Grand id:316045089support by Serena Müller and the indispensable help of Andreas Parth,Michael Unger,Karl-Heinz Heine,Julian Meyer and Ulrike Westphal during soil core sampling.
文摘Site conditions and species identity have a combined effect on fine root growth of trees in pure and mixed stands.However,mechanisms that may contribute to this effect are rarely studied,even though they are essential to assess the potential of species to cope with climate change.This study examined fine root overlap and the linkage between fine root and stem growth of European beech(Fagus sylvatica)growing in pure and mixed stands with Douglas fir(Pseudotsuga menziesii)or Norway spruce(Picea abies)at two different study sites in northwestern Germany.The study sites represented substantially different soil and climate conditions.At each site,three stands,and at each stand,three pairs of trees were studied.In the pure beech stand,the pairs consisted of two beech trees,while in the mixed stands each pair was composed of a beech tree and a conifer.Between each pair,three evenly spaced soil cores were taken monthly throughout the growing season.In the pure beech stands,microsatellite markers were used to assign the fine roots to individual trees.Changes in stem diameter of beech were quantified and then upscaled to aboveground wood productivity with automatic high-resolution circumference dendrometers.We found that fine root overlap between neighboring trees varied independently of the distance between the paired trees or the stand types(pure versus mixed stands),indicating that there was no territorial competition.Aboveground wood productivity(wood NPP)and fine root productivity(root NPP)showed similar unimodal seasonal patterns,peaking in June.However,this pattern was more distinct for root NPP,and root NPP started earlier and lasted longer than wood NPP.The influence of site conditions on the variation in wood and root NPP of beech was stronger than that of stand type.Wood NPP was,as expected,higher at the richer site than at the poorer site.In contrast,root NPP was higher at the poorer than at the richer site.We concluded that beech can respond to limited resources not only above-but also belowground and that the negative relationship between above-and belowground growth across the study sites suggests an‘optimal partitioning’of growth under stress.
基金funded by the National Natural Science Foundation of China(41501057)the West Light Foundation of Chinese Academy of Sciences,the Open Fund of the Key Laboratory of Mountain Surface Processes and Eco-regulationthe National Basic Research Program of China(2013CBA01808)
文摘Improving our knowledge of the effects of environmental factors (e.g. soil conditions, precipitation and temperature) on belowground biomass in an alpine grassland is essential for understanding the consequences of carbon storage in this biome. The object of this study is to investigate the relative importance of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze and Yellow rivers, Tibetan Plateau. Soil organic carbon (SOC), total nitrogen (TN) and total phosphorous (TP) contents and belowground biomass were measured at 22 sampling sites across an alpine meadow on the Tibetan Plateau. We analyzed the data by using the redundancy analysis to determine the main environmental factors affecting the belowground biomass and the contribution of each factor. The results showed that SOC, TN and TP were the main factors that influenced belowground biomass, and the contribution of SOC, TN and TP on biomass was in the range of 47.87%-72.06% at soil depths of 0-30 cm. Moreover, the combined contribution of annual mean temperature (AMT) and mean annual precipitation (MAP) on belowground biomass ranged from 0.92% to 4.10%. A potential mechanism for the differences in belowground biomass was caused by the variations in soil nitrogen and phosphorous, which were coupled with SOC. A significant correlation was observed between MAP and soil nutrients (SOC, TN and TP) at the soil depth of 0-10 cm (P〈0.05). We concluded that precipitation is an important driving force in regulating ecosystem functioning as reflected in variations of soil nutrients (SOC, TN and TP) and dynamics of belowground biomass in alpine grassland ecosystems.
基金supported by the National Key Research and Development Program of China(2017YFD0200202)the National Natural Science Foundation of China(U1404315)+1 种基金the China Scholarship Council(201608410278)the Natural Science Foundation of Henan Province(182300410014)。
文摘Intercropping of maize(Zea mays L.) and peanut(Arachis hypogaea L.) often results in greater yields than the respective sole crops. However, there is limited knowledge of aboveground and belowground interspecific interactions between maize and peanut in field. A two-year field experiment was conducted to investigate the effects of interspecific interactions on plant growth and grain yield for a peanut/maize intercropping system under different nitrogen(N) and phosphorus(P) levels. The method of root separation was employed to differentiate belowground from aboveground interspecific interactions. We observed that the global interspecific interaction effect on the shoot biomass of the intercropping system decreased with the coexistence period, and belowground interaction contributed more than aboveground interaction to advantages of the intercropping in terms of shoot biomass and grain yield. There was a positive effect from aboveground and belowground interspecific interactions on crop plant growth in the intercropping system, except that aboveground interaction had a negative effect on peanut during the late coexistence period. The advantage of intercropping on grain came mainly from increased maize yield(means 95%) due to aboveground interspecific competition for light and belowground interaction(61%–72% vs. 28%–39% in fertilizer treatments). There was a negative effect on grain yield from aboveground interaction for peanut, but belowground interspecific interaction positively affected peanut grain yield.The supply of N, P, or N + P increased grain yield of intercropped maize and the contribution from aboveground interspecific interaction. Our study suggests that the advantages of peanut/maize intercropping for yield mainly comes from aboveground interspecific competition for maize and belowground interspecific facilitation for peanut, and their respective yield can be enhanced by N and P. These findings are important for managing the intercropping system and optimizing the benefits from using this system.
基金supported by the National Natural Science Foundation of China (U1603235, 31660127)the Tianshan Innovation Team Plan of Xinjiang (2017D14009)
文摘The association between biodiversity and belowground biomass(BGB) remains a central debate in ecology.In this study, we compared the variations in species richness(SR) and BGB as well as their interaction in the top(0–20 cm), middle(20–50 cm) and deep(50–100 cm) soil depths among 8 grassland types(lowland meadow, temperate desert, temperate desert steppe, temperate steppe desert, temperate steppe, temperate meadow steppe, mountain meadow and alpine steppe) and along environmental gradients(elevation, energy condition(annual mean temperature(AMT) and potential evapotranspiration(PET)), and mean annual precipitation(MAP)) based on a 2011–2013 survey of 379 sites in Xinjiang, Northwest China.The SR and BGB varied among the grassland types.The alpine steppe had a medium level of SR but the highest BGB in the top soil depth, whereas the lowland meadow had the lowest SR but the highest BGB in the middle and deep soil depths.The SR and BGB in the different soil depths were tightly associated with elevation, MAP and energy condition;however, the particular forms of trends in SR and BGB depended on environmental factors and soil depths.The relationship between SR and BGB was unimodal in the top soil depth, but SR was positively related with BGB in the middle soil depth.Although elevation, MAP, energy condition and SR had significant effects on BGB, the variations in BGB in the top soil depth were mostly determined by elevation, and those in the middle and deep soil depths were mainly affected by energy condition.These findings highlight the importance of environmental factors in the regulations of SR and BGB as well as their interaction in the grasslands in Xinjiang.
文摘This paper quantifies the relationships among community type, peat layer thickness and habitat age of the mangrove forests in Pohnpei Island, Micronesia and provides a discussion concerning the primary succession and the belowground carbon storage of the main mangrove community types. The ages of the habitat were estimated from a relationship between the thickness of the mangrove peat layer and the formative period, which was decided by calibrated radiocarbon ages. Mangrove communities in the coral reef type habitat were generally arranged in the following order, from seaward to landward: 1) the Rhizophora stylosa or Sonneratia alba community (I or II communities), 2) the typical subunit of the S. alba subcommunity of the Rhizophora apiculata— Bruguiera gymnorrhiza community (III(2)a subunit) and 3) the Xylocarpus granatum subunit of the same subcommunity of the same community (III(2)b subunit). Their habitat ages were estimated to be younger than 460 years, between 360 and 1070 years and between 860 and 2300 years, respectively. Based on these results and other evidences such as photosynthetic characteristics and pollen analysis derived from the previous studies, the primary succession was inferred to have progressed in the order mentioned above. Belowground stored carbon for the main community types in the coral reef type habitat were estimated to be less than 370 t C ha-1 for the I and the II communities, between 290 and 860 t C ha-1 for the III(2)a subunit and between 700 and 1850 t C ha-1 for the III(2)b subunit.
文摘大气CO_(2)浓度升高和海平面上升会通过影响植物的分布和生长状况,继而影响湿地的稳定性。地下生物量是调节潮汐湿地生态系统功能的关键因素,包括土壤有机质的积累和湿地海拔高程的维持。本文通过设置开顶式生长箱(OTC:open top chamber)试验探究不同海拔的3个典型植物群落(SC群落:C_(3)植物为主的群落;MX群落:C_(3)、C_(4)植物混合群落;SP群落:C_(4)植物为主的群落)对CO_(2)浓度升高和海平面上升的响应差异。研究结果显示:CO_(2)浓度升高能够显著增加SC、MX和SP群落的根茎、根和总地下生物量,但年际差异较大。海平面上升显著降低了3个群落植物的根生物量和SC群落高CO_(2)浓度处理下及SP群落对照处理下的总地下生物量,但对根茎却无显著影响。在高盐的条件下,高CO_(2)浓度一定程度上能够缓解高盐分对植物的胁迫,但高CO_(2)浓度的施肥作用下降。对照条件下的SC和MX群落总地下生物量随试验年份延长呈下降趋势,其下降主要是由于海平面的快速上升导致的,而高CO_(2)浓度能减缓其下降趋势,一定程度上抵消胁迫。因此,海平面上升正严重威胁未来湿地的稳定性,而CO_(2)浓度升高能一定程度上缓解海平面上升的危害。
基金supported by the National Key Research and Development Program of China(2023YFF0806900)the National Natural Science Foundation of China(31930072,32241032,42203076)the Natural Science Foundation of Heilongjiang Province of China(ZD2021C002).
文摘It is well known that aboveground productivity usually increases with precipitation.However,how belowground carbon(C)processes respond to changes in precipitation remains elusive,although belowground net primary productivity(BNPP)represents more than one-half of NPP and soil stores the largest terrestrial C in the biosphere.This paper reviews the patterns of belowground C processes(BNPP and soil C)in response to changes in precipitation from transect studies,manipulative experiments,modeling and data integration and synthesis.The results suggest the possible existence of nonlinear patterns of BNPP and soil C in response to changes in precipitation,which is largely different from linear response for aboveground productivity.C allocation,root turnover time and species composition may be three key processes underlying mechanisms of the nonlinear responses to changes in precipitation for belowground C processes.In addition,microbial community structure and long-term ecosystem processes(e.g.mineral assemblage,soil texture,aggregate stability)may also affect patterns of belowground C processes in response to changes in precipitation.At last,we discuss implications and future perspectives for potential nonlinear responses of belowground C processes to changes in precipitation.