Recently,EY released its report Navigating the Belt and Road:Financial sector paves the way for infrastructure,which raises the fact that with the roll-out of the 'One Belt,One Road' initiative and the impleme...Recently,EY released its report Navigating the Belt and Road:Financial sector paves the way for infrastructure,which raises the fact that with the roll-out of the 'One Belt,One Road' initiative and the implementation of a series of reform measures,Chinese enterprises’outbound investments,led by infrastructure construction,continued its展开更多
Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient...Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient magnetospheric and wave parameters has been investigated, there is rather limited understanding regarding the extent to which the dynamic evolution of Jovian radiation belt electrons, under the impact of chorus wave scattering, depends on the electron distribution profiles. We adopt a group of reasonable initial conditions based upon the available observations and models for quantitative analyses. We find that inclusion of pitch angle variation in initial conditions can result in increased electron losses at lower pitch angles and substantially modify the pitch angle evolution profiles of > ~500 keV electrons, while variations of electron energy spectrum tend to modify the evolution primarily of 1 MeV and 5 MeV electrons. Our results explicitly demonstrate the importance to the radiation belt electron dynamics in the Jovian magnetosphere of the initial shape of the electron phase space density, and indicate the extent to which variations in electron energy spectrum and pitch angle distribution can contribute to the evolution of Jovian radiation belt electrons caused by chorus wave scattering.展开更多
Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination o...Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to L_J^3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites.展开更多
Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are ...Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are located at the northern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 160 - 180 m. The center position of rupture zone underground corresponds to the surface breaking trace, and is equally distributed at the edges of the two fault walls. However, Hongkou surveying line is located at the southern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 180 -200 m. The rupture zone underground is mainly distributed below fault scarp. The Wenchuan MsS. 0 earthquake and Lushan Ms7.0 earthquake both occurred at the Longmenshan fault belt. The results will provide information for the structure background of the two violent earthquakes.展开更多
Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great dif...Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great difference in physical property of the crust on different sides of the fault. The inferred location of crustal changes is consistent with land-form boundary on the surface展开更多
In this paper, the modifications of the whistler dispersion characteristics are investigated which arise if resonant electrons are taken into account. The following chain of processes is emphasized: Generation of whis...In this paper, the modifications of the whistler dispersion characteristics are investigated which arise if resonant electrons are taken into account. The following chain of processes is emphasized: Generation of whistler waves propagating at different angles to the magnetic field and their nonlinear interaction with resonant electrons result in the appearance of modulated electron beams in the background plasma. As a result, the dispersion characteristics of waves in this new plasma might be significantly changed. By analysing the modified dispersion characteristics these changes are discussed. Supported by particle simulations and space observations, it is assumed that in the electron distribution function at the resonance velocity a plateau-like beam is formed. Because of the weakness of the beam, the term “beam/plateau population (b/p)” is used. By solving the kinetic dispersion relation of whistler waves in electron plasmas with b/p populations, the associated modifications of the whistler dispersion characteristics are presented in diagrams showing, in particular, the frequency versus propagation angle dependence of the excited waves. It is important to point out the two functions of the b/p populations. Because of the bi-directional excitation of whistler waves by temperature anisotropy, one has to distinguish between up- and downstream populations and accordingly between two b/p modes. The interaction of the beam-shifted cyclotron mode ω= Ω<sub>e</sub> + k⋅V<sub>b</sub> (V<sub> b</sub>V<sub>b</sub> is the b/p velocity, Ω<sub>e</sub>: electron cyclotron frequency) with the whistler mode leads to enhanced damping at the ω-k point where they intersect. This is the origin of the frequency gap at half the electron cyclotron frequency (ω~Ω<sub>e</sub>/2) for quasi-parallel waves which are driven by temperature anisotropy. Furthermore, it is shown that the upstream b/p electrons alone (in the absence of temperature anisotropy) can excite (very) oblique whistler waves near the resonance cone. The governing instability results from the interaction of the beam/plateau mode ω= k⋅V<sub>b</sub> (V<sub>b</sub> > 0) with the whistler mode. As a further remarkable effect, another frequency gap at ω~Ω<sub>e</sub>/2 in the range of large propagation angles may arise. It happens at the triple point where both b/p modes and the whistler mode intersect. Our investigation shows that the consideration of resonant electrons in form of beam/plateau populations leads to significant modifications of the spectrum of magnetospheric whistler waves which are originally driven by temperature anisotropy. Relations to recent and former space observations are discussed.展开更多
Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone...Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone in the NW-SE direction, and is about 400 m long. The results reveal trapped waves in the rup- tured fault zone of the earthquake, and indicate a great difference in physical property between the media inside and outside the fault zone. The predominant frequency of the fault-zone trapped waves is about 3 -4 Hz. The wave amplitudes are larger near the exploration trench. The width of the fault zone in the crust at this location is estimated to be 200 m. In some records, the waveforms and the arrival times of S waves are quite different between the two sides of the trench. The place of change coincides with the boundary of uplift at the surface.展开更多
We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory....We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.展开更多
文摘Recently,EY released its report Navigating the Belt and Road:Financial sector paves the way for infrastructure,which raises the fact that with the roll-out of the 'One Belt,One Road' initiative and the implementation of a series of reform measures,Chinese enterprises’outbound investments,led by infrastructure construction,continued its
基金supported by NSFC grants (41674163) and (41474141)by the Hubei Province Natural Science ExcellentYouth Foundation (2016CFA044)the open-fund grant by the Lunar and Planetary Science Laboratory, Macao University of Science and Technology Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences
文摘Wave-particle interactions triggered by whistler-mode chorus waves are an important contributor to the Jovian radiation belt electron dynamics. While the sensitivity of chorus-driven electron scattering to the ambient magnetospheric and wave parameters has been investigated, there is rather limited understanding regarding the extent to which the dynamic evolution of Jovian radiation belt electrons, under the impact of chorus wave scattering, depends on the electron distribution profiles. We adopt a group of reasonable initial conditions based upon the available observations and models for quantitative analyses. We find that inclusion of pitch angle variation in initial conditions can result in increased electron losses at lower pitch angles and substantially modify the pitch angle evolution profiles of > ~500 keV electrons, while variations of electron energy spectrum tend to modify the evolution primarily of 1 MeV and 5 MeV electrons. Our results explicitly demonstrate the importance to the radiation belt electron dynamics in the Jovian magnetosphere of the initial shape of the electron phase space density, and indicate the extent to which variations in electron energy spectrum and pitch angle distribution can contribute to the evolution of Jovian radiation belt electrons caused by chorus wave scattering.
基金supported by the NSFC grants (41674163) and (41474141)by Lunar and Planetary Science Laboratory, Macao University of Science and Technology-Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences (FDCT No. 039/2013/A2)by the Hubei Province Natural Science Excellent Youth Foundation (2016CFA044)
文摘Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to L_J^3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites.
基金supported by the National Natural Science Foundation of China(4107406940974053+1 种基金40774043)RCEG201301
文摘Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are located at the northern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 160 - 180 m. The center position of rupture zone underground corresponds to the surface breaking trace, and is equally distributed at the edges of the two fault walls. However, Hongkou surveying line is located at the southern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 180 -200 m. The rupture zone underground is mainly distributed below fault scarp. The Wenchuan MsS. 0 earthquake and Lushan Ms7.0 earthquake both occurred at the Longmenshan fault belt. The results will provide information for the structure background of the two violent earthquakes.
基金supported by the National Natural Science Foundation ofChina(41074069,40974053,90814001)RRCEG201103
文摘Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great difference in physical property of the crust on different sides of the fault. The inferred location of crustal changes is consistent with land-form boundary on the surface
文摘In this paper, the modifications of the whistler dispersion characteristics are investigated which arise if resonant electrons are taken into account. The following chain of processes is emphasized: Generation of whistler waves propagating at different angles to the magnetic field and their nonlinear interaction with resonant electrons result in the appearance of modulated electron beams in the background plasma. As a result, the dispersion characteristics of waves in this new plasma might be significantly changed. By analysing the modified dispersion characteristics these changes are discussed. Supported by particle simulations and space observations, it is assumed that in the electron distribution function at the resonance velocity a plateau-like beam is formed. Because of the weakness of the beam, the term “beam/plateau population (b/p)” is used. By solving the kinetic dispersion relation of whistler waves in electron plasmas with b/p populations, the associated modifications of the whistler dispersion characteristics are presented in diagrams showing, in particular, the frequency versus propagation angle dependence of the excited waves. It is important to point out the two functions of the b/p populations. Because of the bi-directional excitation of whistler waves by temperature anisotropy, one has to distinguish between up- and downstream populations and accordingly between two b/p modes. The interaction of the beam-shifted cyclotron mode ω= Ω<sub>e</sub> + k⋅V<sub>b</sub> (V<sub> b</sub>V<sub>b</sub> is the b/p velocity, Ω<sub>e</sub>: electron cyclotron frequency) with the whistler mode leads to enhanced damping at the ω-k point where they intersect. This is the origin of the frequency gap at half the electron cyclotron frequency (ω~Ω<sub>e</sub>/2) for quasi-parallel waves which are driven by temperature anisotropy. Furthermore, it is shown that the upstream b/p electrons alone (in the absence of temperature anisotropy) can excite (very) oblique whistler waves near the resonance cone. The governing instability results from the interaction of the beam/plateau mode ω= k⋅V<sub>b</sub> (V<sub>b</sub> > 0) with the whistler mode. As a further remarkable effect, another frequency gap at ω~Ω<sub>e</sub>/2 in the range of large propagation angles may arise. It happens at the triple point where both b/p modes and the whistler mode intersect. Our investigation shows that the consideration of resonant electrons in form of beam/plateau populations leads to significant modifications of the spectrum of magnetospheric whistler waves which are originally driven by temperature anisotropy. Relations to recent and former space observations are discussed.
基金supported by the Natural Science Fundation of China(40774043,40674043,90814001)
文摘Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone in the NW-SE direction, and is about 400 m long. The results reveal trapped waves in the rup- tured fault zone of the earthquake, and indicate a great difference in physical property between the media inside and outside the fault zone. The predominant frequency of the fault-zone trapped waves is about 3 -4 Hz. The wave amplitudes are larger near the exploration trench. The width of the fault zone in the crust at this location is estimated to be 200 m. In some records, the waveforms and the arrival times of S waves are quite different between the two sides of the trench. The place of change coincides with the boundary of uplift at the surface.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40774078, 40404012, 40474064 and 40674076, and the Visiting Scholar Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences.
文摘We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory. The diffusion coefficients are proportional to the electric field amplitude E, much greater than those for the regular first-order resonance, which are proportional to the electric field amplitudes square E^2. Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek = 50 keV and 100 keV at locations L = 2 and L = 3.5. The timescale for the loss process of protons by the Whistler waves is found to approach one hour, comparable to that by the EMIC waves, suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.