期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
融合混沌映射和自适应T分布的蜣螂优化算法
1
作者 李红民 马亚伟 +1 位作者 刘瑞玉 汪明 《软件工程》 2024年第11期63-68,共6页
针对原始蜣螂优化算法(DBO)存在的收敛精度低、易陷入局部最优等问题,提出一种改进的蜣螂优化算法。该算法采用混沌映射初始化蜣螂种群以提高种群的多样性,引入北方苍鹰优化算法的勘探策略以增强算法的全局勘探能力,并改进一种非线性边... 针对原始蜣螂优化算法(DBO)存在的收敛精度低、易陷入局部最优等问题,提出一种改进的蜣螂优化算法。该算法采用混沌映射初始化蜣螂种群以提高种群的多样性,引入北方苍鹰优化算法的勘探策略以增强算法的全局勘探能力,并改进一种非线性边界收敛因子以平衡其收敛速度和收敛精度。同时,采用自适应T分布扰动策略以增强算法跳出局部最优的能力。实验结果表明,改进后的DBO算法在15个基准测试函数的求解寻优中,有13个测试函数的求解结果优于原始蜣螂优化算法、麻雀搜索算法、灰狼优化算法、鲸鱼优化算法和哈里斯鹰优化算法的求解结果,表现出更高的收敛精度、更快的收敛速度及更高的稳定性。 展开更多
关键词 蜣螂优化算法 混沌映射 T分布扰动 基准测试函数
下载PDF
基于正余弦的非线性哈里斯鹰优化算法
2
作者 夏小刚 彭嘉超 《河南科技大学学报(自然科学版)》 CAS 北大核心 2024年第5期93-104,M0008,共13页
针对哈里斯鹰优化算法(HHO)收敛精度低、易陷入局部最优等问题,提出了一种基于正余弦的非线性哈里斯鹰优化算法(SCNHHO)。首先,采用佳点集策略对种群进行初始化,使种群分布更均匀,提高算法收敛速度和精度;其次,在探索阶段引入正余弦策略... 针对哈里斯鹰优化算法(HHO)收敛精度低、易陷入局部最优等问题,提出了一种基于正余弦的非线性哈里斯鹰优化算法(SCNHHO)。首先,采用佳点集策略对种群进行初始化,使种群分布更均匀,提高算法收敛速度和精度;其次,在探索阶段引入正余弦策略,利用正余弦函数的震荡特性扩大搜索范围,寻求更多潜在的优质解;最后,在开发阶段引入非线性参数来平衡探索与开发,避免算法陷入局部最优。针对不同维度的基准测试函数进行性能测试,结合Wilcoxon秩和检验与Friedman检验的结果,将该算法与其他5个对比算法进行分析。结果表明,改进算法性能较原始HHO算法有较大提升,并且优于斑马优化算法(ZOA)、鲸鱼优化算法(WOA)和2种哈里斯鹰算法的变体(MHHO和IHHO),验证了改进策略的有效性。最后通过三杆桁架设计问题进一步验证了SCNHHO的实用性。 展开更多
关键词 哈里斯鹰优化算法 佳点集策略 正余弦函数 非线性参数 Wilcoxon秩和检验 基准测试函数
下载PDF
多策略融合改进的蜣螂优化算法 被引量:6
3
作者 王乐遥 顾磊 《计算机系统应用》 2024年第2期224-231,共8页
针对标准蜣螂优化算法(DBO)存在的全局探索能力欠缺、收敛精度低及易陷入局部最优等不足,提出了一种融合多策略的改进蜣螂优化算法(MSDBO).首先,引入社会学习策略引导推球蜣螂进行位置更新,提高了算法全局探索能力,避免算法陷入局部最优... 针对标准蜣螂优化算法(DBO)存在的全局探索能力欠缺、收敛精度低及易陷入局部最优等不足,提出了一种融合多策略的改进蜣螂优化算法(MSDBO).首先,引入社会学习策略引导推球蜣螂进行位置更新,提高了算法全局探索能力,避免算法陷入局部最优;其次,提出一种方向跟随策略,建立起小偷蜣螂与推球蜣螂个体间的交互,提高了寻优精度;最后,引入环境感知概率,引导小偷蜣螂合理采用方向跟随策略,兼顾了性能与时间消耗.在12个基准测试函数上进行求解分析,并与其他优化算法进行对比,证明了MSDBO的寻优性能明显优于对比算法,在压力容器设计优化问题上的结果验证了MSDBO求解实际工程约束优化问题的有效性. 展开更多
关键词 蜣螂优化算法 社会学习 方向跟随 环境感知概率 基准测试函数 压力容器设计
下载PDF
适应度反向学习的平衡灰狼算法及其应用
4
作者 杨宸 张玮 +2 位作者 许鑫 张振喜 高暾 《计算机工程与设计》 北大核心 2024年第4期1047-1055,共9页
针对传统灰狼优化算法位置更新时勘探与开发失衡,收敛速度慢且陷入局部最优的问题,提出一种改进的灰狼算法(balanced grey wolf algorithm based on fitness back learning,BGWO),引入非线性控制参数,增强算法前期勘探能力,加速收敛;在... 针对传统灰狼优化算法位置更新时勘探与开发失衡,收敛速度慢且陷入局部最优的问题,提出一种改进的灰狼算法(balanced grey wolf algorithm based on fitness back learning,BGWO),引入非线性控制参数,增强算法前期勘探能力,加速收敛;在种群迭代阶段采用重心反向学习的最优适应度权重更新策略,平衡算法的勘探与开发。16组基准函数测试结果表明,改进后算法能自适应跳出局部最优,在加快算法收敛速度的同时提高全局收敛能力与精度。将BGWO应用于PV型旋风分离器粒级效率GBDT(gradient boosting decision tree)的建模,提高了GBDT的精度,模型相关系数0.980,均方误差0.00079,BGWO-GBDT与GBDT、PSO-GBDT和GWO-GBDT相对比,建模精度和稳定性明显提高,验证了BGWO的有效性。 展开更多
关键词 灰狼优化算法 勘探与开发 非线性控制 适应度反向学习 基准函数测试 梯度提升决策树 旋风分离器效率模型
下载PDF
自适应差分变异的人工鱼群算法
5
作者 郭长珍 李整 《计算机系统应用》 2024年第8期214-221,共8页
针对人工鱼群算法存在的全局搜索能力欠缺,鲁棒性差及易陷入局部极值等不足,提出一种自适应差分变异的人工鱼群算法(ADMAFSA).首先,该算法采用自适应视野和步长策略,改善种群个体在较优区域的精细搜索能力,提升算法的寻优精度.其次,在... 针对人工鱼群算法存在的全局搜索能力欠缺,鲁棒性差及易陷入局部极值等不足,提出一种自适应差分变异的人工鱼群算法(ADMAFSA).首先,该算法采用自适应视野和步长策略,改善种群个体在较优区域的精细搜索能力,提升算法的寻优精度.其次,在人工鱼群的随机行为中引入反向学习机制,通过发掘潜在的寻优空间,提高算法的全局搜索性能,避免算法早熟收敛.最后,借鉴差分进化算法对质量较差的人工鱼进行变异操作,从而增加鱼群的多样性,降低算法陷入局部极值的可能性.为验证改进算法的性能,本文对6个基准测试函数和8个CEC2019函数进行仿真,与其他AFSA变体、新型智能算法进行对比,实验结果表明,ADMAFSA在寻优精度和鲁棒性方面均有所提高.最后,在齿轮系设计问题上,进一步证明了改进算法具有较好的优化效果. 展开更多
关键词 人工鱼群算法 自适应 差分变异 反向学习机制 基准测试函数
下载PDF
一种多策略改进鲸鱼优化算法的混沌系统参数辨识
6
作者 潘悦悦 吴立飞 杨晓忠 《智能系统学报》 CSCD 北大核心 2024年第1期176-189,共14页
针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初... 针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初始种群,采用非线性收敛因子和自适应权重,提高算法收敛速度,为了避免算法陷入局部最优,动态选择自适应t分布或蚁狮优化算法更新后期位置,提高处理局部极值的能力。通过对10个基准函数和高维测试函数进行仿真试验,表明MIWOA具有良好的稳定性和收敛精度。将MIWOA应用于辨识Rossler和Lu混沌系统参数,仿真结果优于现有成果,表明本文MIWOA辨识混沌系统参数的高效性和实用性。 展开更多
关键词 多策略改进鲸鱼优化算法 混沌系统 参数辨识 Chebyshev混沌映射 自适应t分布 蚁狮优化算法 基准函数 Wilcoxon秩和检验
下载PDF
融合动态小孔成像的鲸鱼优化算法
7
作者 杜一龙 贾鹤鸣 +2 位作者 李政邦 张津瑞 卢程浩 《龙岩学院学报》 2024年第2期20-28,共9页
针对鲸鱼优化算法容易陷入局部最优和收敛精度低等缺点,提出了一种融合动态小孔成像策略的改进鲸鱼优化(DPIWOA)算法。动态小孔成像策略与普通的反向学习策略相比,可以产生更多样化的对立点,使用该策略可以加快算法的收敛速度和提高收... 针对鲸鱼优化算法容易陷入局部最优和收敛精度低等缺点,提出了一种融合动态小孔成像策略的改进鲸鱼优化(DPIWOA)算法。动态小孔成像策略与普通的反向学习策略相比,可以产生更多样化的对立点,使用该策略可以加快算法的收敛速度和提高收敛精度,同时也可以避免算法在迭代过程中陷入局部最优。通过23个基准测试函数的实验结果表明,DPIWOA在收敛速度和寻优精度等方面均有提升,验证了改进策略的有效性和实用性。 展开更多
关键词 鲸鱼优化算法 动态小孔成像 反向学习 基准函数测试
下载PDF
一种新的全局优化算法:碳循环算法
8
作者 杨达 罗亮 郑龙 《计算机科学》 CSCD 北大核心 2023年第S01期60-66,共7页
随着人类科学技术水平的高速发展,在应用研究、工程设计等领域存在维数大、阶数高、目标函数多、约束条件复杂等传统算法难以求解的困难问题需要优化和解决。以计算机运算与解决问题水平的持续发展为基础,元启发式优化算法被提出并被证... 随着人类科学技术水平的高速发展,在应用研究、工程设计等领域存在维数大、阶数高、目标函数多、约束条件复杂等传统算法难以求解的困难问题需要优化和解决。以计算机运算与解决问题水平的持续发展为基础,元启发式优化算法被提出并被证明解决以上类别的问题要优于传统优化方法。作为对元启发式优化算法的补充,文中提出了一种新的用于连续全局优化的元启发式算法:碳循环算法(Carbon Cycle Algorithm,CCA)。该算法模拟了碳元素的自然循环过程,具体为通过模拟动植物呼吸、动物捕食、动植物死亡、分解者分解以及植物光合作用过程,以此为策略来更好地探索和利用搜索空间。通过与一些著名的优化算法在13个基准函数上的测试对比结果,剖析了该算法的计算收敛过程。测试结果表明,该算法具有一定的竞争力并能够解决具有挑战性的问题,可以在大多数基准函数上提供更好的求解精度。 展开更多
关键词 碳循环 元启发式算法 全局优化 基准函数测试 最优解
下载PDF
改进正弦算法引导的蜣螂优化算法 被引量:14
9
作者 潘劲成 李少波 +2 位作者 周鹏 杨贵林 吕东超 《计算机工程与应用》 CSCD 北大核心 2023年第22期92-110,共19页
蜣螂优化器(dung beetle optimizer,DBO)是一种有效的元启发式算法。蜣螂优化算法虽然具有寻优能力强,收敛速度快的特点,但同时也存在全局探索和局部开发能力不平衡,容易陷入局部最优,且全局探索能力较弱的缺点。提出了一种改进的DBO算... 蜣螂优化器(dung beetle optimizer,DBO)是一种有效的元启发式算法。蜣螂优化算法虽然具有寻优能力强,收敛速度快的特点,但同时也存在全局探索和局部开发能力不平衡,容易陷入局部最优,且全局探索能力较弱的缺点。提出了一种改进的DBO算法来解决全局优化问题,命名为MSADBO。受改进正弦算法(improved sine algorithm,MSA)的启发,赋予蜣螂MSA的全局探索和局部开发能力,扩大其搜索范围,提高全局探索能力,减少陷入局部最优的可能性。同时加入了混沌映射初始化和变异算子进行扰动。为了验证MSADBO的有效性,对该算法采用23个基准测试函数进行了测试,并与其他知名的元启发式算法进行了比较。结果表明,该算法具有良好的性能。为了进一步阐述MSADBO算法的实际应用潜力,将该算法成功地应用于3个工程设计问题。实验结果表明,所提出的MSADBO算法可以有效地处理实际应用问题。 展开更多
关键词 蜣螂优化算法 改进正弦算法 MSADBO 混沌映射初始化 变异算子 基准测试函数 工程设计问题
下载PDF
融合学习行为策略的改进黑猩猩优化算法 被引量:2
10
作者 贾鹤鸣 林建凯 +3 位作者 吴迪 力尚龙 文昌盛 饶洪华 《计算机工程与应用》 CSCD 北大核心 2023年第16期82-92,共11页
针对黑猩猩优化算法收敛速度慢、寻优精度低以及容易陷入局部最优的问题,提出融合学习行为策略的改进黑猩猩优化算法(modified chimp optimization algorithm,MChOA)。采用准反向学习策略更新种群,增加种群的多样性和随机性,提高算法全... 针对黑猩猩优化算法收敛速度慢、寻优精度低以及容易陷入局部最优的问题,提出融合学习行为策略的改进黑猩猩优化算法(modified chimp optimization algorithm,MChOA)。采用准反向学习策略更新种群,增加种群的多样性和随机性,提高算法全局搜索能力,同时避免算法陷入局部最优。基于黑猩猩学习行为策略,通过随机选择“模仿学习”算子或“情绪感应”算子更新黑猩猩个体位置,增强算法局部开发能力,加快算法的收敛速度。选取16个基准函数以及12个CEC2014进行仿真实验测试,结果表明MChOA与传统ChOA相比具有较高的求解精度和较好的寻优性能。通过两个工程设计问题的求解,证明了MChOA在实际工程问题上也具有较高的实际应用价值。 展开更多
关键词 黑猩猩优化算法 准反向学习 学习行为策略 基准测试函数 工程问题求解
下载PDF
一种改进灰狼优化算法 被引量:1
11
作者 陈建东 聂斌 雷银香 《现代信息科技》 2023年第19期94-98,共5页
针对原始灰狼优化算法(GWO)易陷入局部最优和全局搜索能力较弱的问题,提出一种改进灰狼优化算法(Improved Grey Wolf Optimization,IGWO)。该算法首先通过引入非线性收敛因子来调整控制参数,进一步平衡GWO的全局搜索和局部开发能力。其... 针对原始灰狼优化算法(GWO)易陷入局部最优和全局搜索能力较弱的问题,提出一种改进灰狼优化算法(Improved Grey Wolf Optimization,IGWO)。该算法首先通过引入非线性收敛因子来调整控制参数,进一步平衡GWO的全局搜索和局部开发能力。其次,在灰狼位置更新的过程中结合布谷鸟优化算法的搜索机制,帮助灰狼种群陷入停滞时跳出局部最优。最后,在6个基准测试函数进行仿真实验,结果表明IGWO能提升GWO的性能。 展开更多
关键词 灰狼优化算法 非线性收敛因子 布谷鸟搜索 基准测试函数
下载PDF
全局扰动和互利因子作用的飞蛾扑火优化算法 被引量:3
12
作者 靳储蔚 李姗鸿 +1 位作者 张琳娜 张达敏 《计算机工程与设计》 北大核心 2023年第8期2297-2304,共8页
为解决飞蛾扑火优化(moth-flame optimization, MFO)算法收敛速度慢、容易陷入局部最优等问题,提出一种飞蛾扑火优化(DBMFO)算法。使用Bernoulli混沌映射,提高初始种群的多样性;引入全局扰动因子,提高算法的全局搜索能力;使用互利因子... 为解决飞蛾扑火优化(moth-flame optimization, MFO)算法收敛速度慢、容易陷入局部最优等问题,提出一种飞蛾扑火优化(DBMFO)算法。使用Bernoulli混沌映射,提高初始种群的多样性;引入全局扰动因子,提高算法的全局搜索能力;使用互利因子对全局扰动后的位置再次进行更新,避免新的算法陷入局部最优,使得算法更快收敛。通过对10个基准函数进行仿真实验,确定迭代系数的取值,通过Wilcoxon秩和检验来验证算法性能,其结果表明,改进的DBMFO算法在求解的精确度以及收敛速度上均有明显提升。 展开更多
关键词 群智能算法 飞蛾扑火优化 伯努利混沌映射 全局扰动因子 互利因子 10个基准测试函数 秩和检验
下载PDF
融合联合反向学习与宿主切换机制的䲟鱼优化算法 被引量:1
13
作者 贾鹤鸣 文昌盛 +3 位作者 吴迪 饶洪华 刘庆鑫 力尚龙 《计算机科学与探索》 CSCD 北大核心 2023年第12期2896-2912,共17页
䲟鱼优化算法(ROA)是2021年提出的元启发式优化算法,其模拟了海洋中䲟鱼寄生依附宿主、经验攻击和宿主觅食的行为。ROA的结构简单且易于实现,但全局性稍显不足,易导致算法收敛速度慢甚至后期难以收敛的现象。针对上述问题,在探索阶段加入... 䲟鱼优化算法(ROA)是2021年提出的元启发式优化算法,其模拟了海洋中䲟鱼寄生依附宿主、经验攻击和宿主觅食的行为。ROA的结构简单且易于实现,但全局性稍显不足,易导致算法收敛速度慢甚至后期难以收敛的现象。针对上述问题,在探索阶段加入宿主切换机制,引入新宿主白鲸,提高原算法的探索能力;同时加入联合反向学习策略,增强了算法跳出局部最优的能力,进一步提高了算法的综合优化性能。通过以上改进,提出了一种融合联合反向学习与宿主切换机制的䲟鱼优化算法(IROA)。为了验证IROA的性能与改进优势,将IROA与原始ROA、6种典型的原始算法以及4种关于ROA的改进算法进行对比。通过CEC2020标准测试函数的实验结果表明,IROA具有更强的寻优能力和更高的收敛精度;最后针对汽车防撞性设计问题的求解,进一步验证了IROA的优势和工程适用性。 展开更多
关键词 䲟鱼优化算法 元启发式优化算法 联合反向学习 宿主切换机制 白鲸优化算法 基准函数测试 工程问题求解
下载PDF
基于混沌宿主切换机制的?鱼优化算法
14
作者 贾鹤鸣 力尚龙 +3 位作者 陈丽珍 刘庆鑫 吴迪 郑荣 《计算机应用》 CSCD 北大核心 2023年第6期1759-1767,共9页
鱼优化算法(ROA)的寻优过程包括依附宿主、经验攻击和宿主觅食3种模式,它的探索能力与开发能力较强;但原始算法通过经验攻击切换宿主,导致探索与开发之间平衡较差、收敛较慢且容易陷入局部最优。针对上述问题,提出了一种基于混沌宿主... 鱼优化算法(ROA)的寻优过程包括依附宿主、经验攻击和宿主觅食3种模式,它的探索能力与开发能力较强;但原始算法通过经验攻击切换宿主,导致探索与开发之间平衡较差、收敛较慢且容易陷入局部最优。针对上述问题,提出了一种基于混沌宿主切换机制的改进鱼优化算法(MROA)。首先,设计一种新的宿主切换机制,以更好地平衡探索和开发的能力;然后,为了使鱼初始宿主多样化,引入Tent混沌映射进行种群初始化,进一步优化算法的性能;最后,将MROA与原始ROA和爬行动物搜索算法(RSA)等6种算法在CEC2020测试函数上进行对比实验。分析实验结果可知,MROA求得的最优适应度值、平均适应度值和适应度值标准差分别比ROA、RSA、鲸鱼优化算法(WOA)、哈里斯鹰优化(HHO)算法、精子群优化(SSO)算法、正余弦算法(SCA)和乌燕鸥优化算法(STOA)平均提高了28%、33%和12%。基于CEC2020的测试结果表明,MROA具有良好的寻优能力、收敛能力和鲁棒性;同时,通过求解焊接梁设计问题和多片式离合器制动器设计问题,进一步验证了MROA在工程问题中的有效性。 展开更多
关键词 鱼优化算法 宿主切换机制 Tent混沌映射 基准函数测试 工程问题求解
下载PDF
动态搜索半径的果蝇优化算法 被引量:2
15
作者 高雷阜 赵世杰 +1 位作者 徒君 于冬梅 《计算机应用与软件》 CSCD 2016年第11期221-225,共5页
针对传统果蝇优化算法FOA(Fruit Fly Optimization Algorithm)固定搜索半径导致后期局部寻优性能弱、收敛缓慢的问题,提出一种动态搜索半径的果蝇优化算法DSR-FOA(Fruit Fly Optimization Algorithm With Dynamic Search Radius)。该算... 针对传统果蝇优化算法FOA(Fruit Fly Optimization Algorithm)固定搜索半径导致后期局部寻优性能弱、收敛缓慢的问题,提出一种动态搜索半径的果蝇优化算法DSR-FOA(Fruit Fly Optimization Algorithm With Dynamic Search Radius)。该算法前期以较大搜索半径保证全局寻优性能,而后期搜索半径随迭代次数动态递减以保证局部寻优性能,有效地实现算法全局与局部寻优性能的均衡。其次,针对传统果蝇优化算法不适于优化变量的区间设定问题,通过初始搜索半径设定和平移变换等技术提出一种有效的区间限定方法。数值实验结果表明:改进算法具有较好的寻优精度和预测标准差等指标,验证了算法的有效性和可行性。 展开更多
关键词 果蝇优化算法 搜索半径 平移变换 基准测试函数
下载PDF
遗传并行粒子群优化算法及其性能分析 被引量:1
16
作者 刘昊 李大卫 王莉 《辽宁科技大学学报》 CAS 2008年第3期239-239,共1页
在已有的并行粒子群优化算法的基础上,结合遗传算法,并利用Java语言支持多线程特点,开发出单子群、k子群、任意子群三种遗传并行粒子群优化算法。通过对6个Benchmark测试函数的测试分析,表明这三种算法都具有运行速度快,求解质量... 在已有的并行粒子群优化算法的基础上,结合遗传算法,并利用Java语言支持多线程特点,开发出单子群、k子群、任意子群三种遗传并行粒子群优化算法。通过对6个Benchmark测试函数的测试分析,表明这三种算法都具有运行速度快,求解质量高的特点。相信应用于大规模工程实际问题也能取到令人满意的结果。 展开更多
关键词 粒子群优化算法 遗传算法 性能分析 并行 benchmark JAVA语言 测试分析 测试函数
下载PDF
遗传并行粒子群优化算法及其性能分析 被引量:1
17
作者 刘昊 李大卫 王莉 《辽宁科技大学学报》 CAS 2008年第5期495-499,共5页
在已有的并行粒子群优化算法的基础上,结合遗传算法,并利用Java语言支持多线程特点,开发出单子群、k子群、任意子群三种遗传并行粒子群优化算法。通过对6个Benchmark测试函数的测试分析,表明这三种算法都具有运行速度快,求解质量高的特点。
关键词 粒子群优化 并行 遗传算法 benchmark测试函数 性能分析
下载PDF
竞争算法优化BP神经网络性能研究 被引量:2
18
作者 卢滢宇 《计算机系统应用》 2019年第5期173-177,共5页
针对诸多群智能算法容易陷入局部最优、收敛速度慢的特点,提出一种参数设置少,全局搜索能力强的竞争算法.通过10个基准函数与粒子群算法的比较, 30次试验下竞争算法的平均值与最小值均优于粒子群算法,验证了该算法的有效性.用竞争算法优... 针对诸多群智能算法容易陷入局部最优、收敛速度慢的特点,提出一种参数设置少,全局搜索能力强的竞争算法.通过10个基准函数与粒子群算法的比较, 30次试验下竞争算法的平均值与最小值均优于粒子群算法,验证了该算法的有效性.用竞争算法优化BP神经网络,并对11个测试数据集进行分类,实验结果表明,用竞争算法优化后的BP神经网络在11个测试集上性能均优于原始算法,且在大部分测试集上性能优于用遗传算法优化的BP神经网络.该算法能有效提高分类正确率,增强鲁棒性. 展开更多
关键词 BP神经网络 竞争算法 基准函数 测试数据集
下载PDF
一种快速高效的人工蜂群算法
19
作者 王晓娟 《电子科技》 2015年第3期61-64,共4页
针对人工蜂群算法收敛速度慢和易陷入局部最优的缺点,在雇佣蜂搜索阶段提出了一种基于多维搜索和一维搜索的混合搜索策略,能克服单一一维搜索下收敛速度慢的缺点,有效加快收敛速度;提出了新的跟随蜂蜜源选择策略,可保证种群多样性,增强... 针对人工蜂群算法收敛速度慢和易陷入局部最优的缺点,在雇佣蜂搜索阶段提出了一种基于多维搜索和一维搜索的混合搜索策略,能克服单一一维搜索下收敛速度慢的缺点,有效加快收敛速度;提出了新的跟随蜂蜜源选择策略,可保证种群多样性,增强算法全局搜索能力。通过对12个基准测试函数进行仿真实验并与原算法进行比较,其结果表明改进的算法在收敛速度和精度上均优于人工蜂群算法。 展开更多
关键词 人工蜂群算法 多维搜索 一维搜索 种群多样性 基准测试函数
下载PDF
基于收敛速度和多样性的多目标粒子群种群规模优化设计 被引量:5
20
作者 韩红桂 武淑君 《电子学报》 EI CAS CSCD 北大核心 2018年第9期2263-2269,共7页
针对多目标粒子群优化算法种群规模难以确定的问题,文中提出了一种基于收敛速度和多样性的多目标粒子群优化(Convergence speed and Diversity-based Multi-Objective Particle Swarm Optimization,CD-MOPSO)算法.首先,利用优化过程的... 针对多目标粒子群优化算法种群规模难以确定的问题,文中提出了一种基于收敛速度和多样性的多目标粒子群优化(Convergence speed and Diversity-based Multi-Objective Particle Swarm Optimization,CD-MOPSO)算法.首先,利用优化过程的收敛速度和多样性指标构造种群规模适应度函数,完成了种群规模与优化性能关系的描述;其次,基于适应度函数设计了一种种群规模自适应调整方法,实现了种群规模的动态调整;最后,将提出的CD-MOPSO在基准优化问题ZDT上测试并应用于城市管网优化,实验结果显示CD-MOPSO能够根据求解问题自动调整种群规模,与NSGA-II、MOPSO。 展开更多
关键词 多目标粒子群优化算法 种群规模 自适应调整方法 动态调整 适应度函数 收敛速度 多样性 基准测试函数 城市管网优化
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部