We have witnessed exciting development of RAM technology in the past decade. The memory size grows rapidly and the price continues to decrease, so that it is fea- sible to deploy large amounts of RAM in a computer sys...We have witnessed exciting development of RAM technology in the past decade. The memory size grows rapidly and the price continues to decrease, so that it is fea- sible to deploy large amounts of RAM in a computer system. Several companies and research institutions have devoted a lot of resources to develop in-memory databases (IMDB) that implement queries after loading data into (virtual) memory in advance. The bloom of various in-memory databases pursues us to test and evaluate their performance objectively and fairly. Although the existing database benchmarks like Wisconsin benchmark and TPC-X series have achieved great success, they cannot suit for in-memory databases due to the lack of consideration of unique characteristics of an IMDB. In this study, we propose MemTest, a novel benchmark that concerns some major characteristics of an in-memory database. This benchmark constructs particular metrics, which cover processing time, compression ratio, minimal memory space and column strength of an in-memory database. We design a data model based on inter-bank transaction applications, and a data generator to support uniform and skew data distributions. The MemTest workload includes a set of queries and transactions against the metrics and data model. Finally, we illustrate the efficacy of MemTest through the implementations on two different in-memory databases.展开更多
文摘We have witnessed exciting development of RAM technology in the past decade. The memory size grows rapidly and the price continues to decrease, so that it is fea- sible to deploy large amounts of RAM in a computer system. Several companies and research institutions have devoted a lot of resources to develop in-memory databases (IMDB) that implement queries after loading data into (virtual) memory in advance. The bloom of various in-memory databases pursues us to test and evaluate their performance objectively and fairly. Although the existing database benchmarks like Wisconsin benchmark and TPC-X series have achieved great success, they cannot suit for in-memory databases due to the lack of consideration of unique characteristics of an IMDB. In this study, we propose MemTest, a novel benchmark that concerns some major characteristics of an in-memory database. This benchmark constructs particular metrics, which cover processing time, compression ratio, minimal memory space and column strength of an in-memory database. We design a data model based on inter-bank transaction applications, and a data generator to support uniform and skew data distributions. The MemTest workload includes a set of queries and transactions against the metrics and data model. Finally, we illustrate the efficacy of MemTest through the implementations on two different in-memory databases.