Development of irrigation infrastructure and its efficient management is the primary concern for sustainable food production. The assessment of irrigation infrastructure creation, its utilization, diagnostic evaluatio...Development of irrigation infrastructure and its efficient management is the primary concern for sustainable food production. The assessment of irrigation infrastructure creation, its utilization, diagnostic evaluation of the various performance indices (monitoring) are important to measure the efficiency. Benchmarking of Irrigation Systems (BIS) is for the diagnostic analysis of irrigation performance indicators comprising of Irrigation Infrastructure System (IIS), Agricultural System (AS), Water Delivery Dynamics (WDD). Since, the performance of an irrigation command varies with space and time, utilization of spatial information technologies viz. Remote Sensing (RS), Geographical Information Systems (GIS), Global Positioning Systems (GPS) useful to provide spatial information on several indices in the process of benchmarking (BM). Information requirements for BIS at different stages, utilization of spatial information technologies to derive irrigation performance indicators was discussed with suitable examples and demonstrated in this study. The studies carried out indicates that the geospatial approach for BIS enabled the improvements in data collection methods, diagnostic analysis, spatio-temporal visualisation of BM indicators at disaggregated canal level which would be useful for decision support during the corrective management measures. The conjunctive use of multi-date (medium resolution) satellite data, high spatial resolution data, field data on water deliveries was found to be an alternative to the conventional non-spatial approaches for BIS and thereby better water resources planning and management.展开更多
Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics ...Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics in fusion and astrophysical plasmas. In this work, we mainly focus on reviewing our two projects performed in the past decade. One is about the ions with Z■30 that are generally of astrophysical interest, and the other one is about the highly charged krypton(Z = 36)and tungsten(Z = 74) ions that are relevant in research of magnetic confinement fusion. Two different and independent methods, namely, multiconfiguration Dirac–Hartree–Fock(MCDHF) and the relativistic many-body perturbation theory(RMBPT) are usually used in our studies. As a complement/extension to our previous works for highly charged tungsten ions with open M-shell and open N-shell, we also mainly focus on presenting and discussing our complete RMBPT and MCDHF calculations for the excitation energies, wavelengths, electric dipole(E1), magnetic dipole(M1), electric quadrupole(E2), and magnetic quadrupole(M2) transition properties, and level lifetimes for the lowest 148 levels belonging to the 3l3configurations in Al-like W61+. We also summarize the uncertainties of our systematical theoretical calculations, by cross-checking/validating our datasets from our RMBPT and MCDHF calculations, and by detailed comparisons with available accurate observations and other theoretical calculations. The data are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10569.展开更多
Medium-term air quality assessment,benchmarking it to recent past data can usefully complement short-term air quality index data for monitoring purposes.By using daily and monthly averaged data,medium-term air quality...Medium-term air quality assessment,benchmarking it to recent past data can usefully complement short-term air quality index data for monitoring purposes.By using daily and monthly averaged data,medium-term air quality benchmarking provides a distinctive perspective with which to monitor air quality for sustainability planning and ecosystem perspectives.By normalizing the data for individual air pollutants to a standard scale they can be more easily integrated to generate a daily combined local area benchmark(CLAB).The objectives of the study are to demonstrate that medium-term air quality benchmarking can be tailored to reflect local conditions by selecting the most relevant pollutants to incorporate in the CLAB indicator.Such a benchmark can provide an overall air quality assessment for areas of interest.A case study is presented for Dallas County(U.S.A.)applying the proposed method by benchmarking 2020 data for air pollutants to their trends established for 2015 to 2019.Six air pollutants considered are:ozone,carbon monoxide,nitrogen dioxide,sulfur dioxide,benzene and particulate matter less than 2.5 micrometres.These pollutants are assessed individually and in terms of CLAB,and their 2020 variations for Dallas County compared to daily trends established for years 2015 to 2019.Reductions in benzene and carbon monoxide during much of 2020 are clearly discernible compared to preceding years.The CLAB indicator shows clear seasonal trends for air quality for 2015 to 2019 with high pollution in winter and spring compared to other seasons that is strongly influenced by climatic variations with some anthropogenic inputs.Conducting CLAB analysis on an ongoing basis,using a relevant near-past time interval for benchmarking that covers several years,can reveal useful monthly,seasonal and annual trends in overall air quality.This type of medium-term,benchmarked air quality data analysis is well suited for ecosystem monitoring.展开更多
The release of the generative pre-trained transformer(GPT)series has brought artificial general intelligence(AGI)to the forefront of the artificial intelligence(AI)field once again.However,the questions of how to defi...The release of the generative pre-trained transformer(GPT)series has brought artificial general intelligence(AGI)to the forefront of the artificial intelligence(AI)field once again.However,the questions of how to define and evaluate AGI remain unclear.This perspective article proposes that the evaluation of AGI should be rooted in dynamic embodied physical and social interactions(DEPSI).More specifically,we propose five critical characteristics to be considered as AGI benchmarks and suggest the Tong test as an AGI evaluation system.The Tong test describes a value-and ability-oriented testing system that delineates five levels of AGI milestones through a virtual environment with DEPSI,allowing for infinite task generation.We contrast the Tong test with classical AI testing systems in terms of various aspects and propose a systematic evaluation system to promote standardized,quantitative,and objective benchmarks and evaluation of AGI.展开更多
This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optima...This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm.展开更多
In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve...In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions.展开更多
Multi-agent reinforcement learning(MARL)has been a rapidly evolving field.This paper presents a comprehensive survey of MARL and its applications.We trace the historical evolution of MARL,highlight its progress,and di...Multi-agent reinforcement learning(MARL)has been a rapidly evolving field.This paper presents a comprehensive survey of MARL and its applications.We trace the historical evolution of MARL,highlight its progress,and discuss related survey works.Then,we review the existing works addressing inherent challenges and those focusing on diverse applications.Some representative stochastic games,MARL means,spatial forms of MARL,and task classification are revisited.We then conduct an in-depth exploration of a variety of challenges encountered in MARL applications.We also address critical operational aspects,such as hyperparameter tuning and computational complexity,which are pivotal in practical implementations of MARL.Afterward,we make a thorough overview of the applications of MARL to intelligent machines and devices,chemical engineering,biotechnology,healthcare,and societal issues,which highlights the extensive potential and relevance of MARL within both current and future technological contexts.Our survey also encompasses a detailed examination of benchmark environments used in MARL research,which are instrumental in evaluating MARL algorithms and demonstrate the adaptability of MARL to diverse application scenarios.In the end,we give our prospect for MARL and discuss their related techniques and potential future applications.展开更多
The selection of suitable models and solutions is a fundamental requirement for con-ducting energy flow analysis in integrated energy systems(IES).However,this task is challenging due to the vast number of existing mo...The selection of suitable models and solutions is a fundamental requirement for con-ducting energy flow analysis in integrated energy systems(IES).However,this task is challenging due to the vast number of existing models and solutions,making it difficult to comprehensively compare scholars'studies with current work.In this paper,we aim to address this issue by presenting a comprehensive overview of mainstream IES models and clarifying their relationships,thereby providing guidance for scholars in selecting appro-priate models.Additionally,we introduce several widely used solvers for solving algebraic and differential equations,along with their detailed implementations in the energy flow analysis of IES.Furthermore,we conduct extensive testing and demonstration of these models and methods in various cases to establish benchmarking datasets.To facilitate reproducibility,verification and comparisons,we provide open‐source access to these datasets,including system data,analysis settings and implementations of the various solvers in the mainstream models.Scholars can utilise the provided datasets to reproduce the results,verify the findings and perform comparative analyses.Moreover,they have the flexibility to customise these settings according to their specific requirements.展开更多
文摘Development of irrigation infrastructure and its efficient management is the primary concern for sustainable food production. The assessment of irrigation infrastructure creation, its utilization, diagnostic evaluation of the various performance indices (monitoring) are important to measure the efficiency. Benchmarking of Irrigation Systems (BIS) is for the diagnostic analysis of irrigation performance indicators comprising of Irrigation Infrastructure System (IIS), Agricultural System (AS), Water Delivery Dynamics (WDD). Since, the performance of an irrigation command varies with space and time, utilization of spatial information technologies viz. Remote Sensing (RS), Geographical Information Systems (GIS), Global Positioning Systems (GPS) useful to provide spatial information on several indices in the process of benchmarking (BM). Information requirements for BIS at different stages, utilization of spatial information technologies to derive irrigation performance indicators was discussed with suitable examples and demonstrated in this study. The studies carried out indicates that the geospatial approach for BIS enabled the improvements in data collection methods, diagnostic analysis, spatio-temporal visualisation of BM indicators at disaggregated canal level which would be useful for decision support during the corrective management measures. The conjunctive use of multi-date (medium resolution) satellite data, high spatial resolution data, field data on water deliveries was found to be an alternative to the conventional non-spatial approaches for BIS and thereby better water resources planning and management.
基金the support from the National Natural Science Foundation of China (Grant Nos. 12074081 and 12104095)。
文摘Atomic radiative data such as excitation energies, transition wavelengths, radiative rates, and level lifetimes with high precision are the essential parameters for the abundance analysis, simulation, and diagnostics in fusion and astrophysical plasmas. In this work, we mainly focus on reviewing our two projects performed in the past decade. One is about the ions with Z■30 that are generally of astrophysical interest, and the other one is about the highly charged krypton(Z = 36)and tungsten(Z = 74) ions that are relevant in research of magnetic confinement fusion. Two different and independent methods, namely, multiconfiguration Dirac–Hartree–Fock(MCDHF) and the relativistic many-body perturbation theory(RMBPT) are usually used in our studies. As a complement/extension to our previous works for highly charged tungsten ions with open M-shell and open N-shell, we also mainly focus on presenting and discussing our complete RMBPT and MCDHF calculations for the excitation energies, wavelengths, electric dipole(E1), magnetic dipole(M1), electric quadrupole(E2), and magnetic quadrupole(M2) transition properties, and level lifetimes for the lowest 148 levels belonging to the 3l3configurations in Al-like W61+. We also summarize the uncertainties of our systematical theoretical calculations, by cross-checking/validating our datasets from our RMBPT and MCDHF calculations, and by detailed comparisons with available accurate observations and other theoretical calculations. The data are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.10569.
文摘Medium-term air quality assessment,benchmarking it to recent past data can usefully complement short-term air quality index data for monitoring purposes.By using daily and monthly averaged data,medium-term air quality benchmarking provides a distinctive perspective with which to monitor air quality for sustainability planning and ecosystem perspectives.By normalizing the data for individual air pollutants to a standard scale they can be more easily integrated to generate a daily combined local area benchmark(CLAB).The objectives of the study are to demonstrate that medium-term air quality benchmarking can be tailored to reflect local conditions by selecting the most relevant pollutants to incorporate in the CLAB indicator.Such a benchmark can provide an overall air quality assessment for areas of interest.A case study is presented for Dallas County(U.S.A.)applying the proposed method by benchmarking 2020 data for air pollutants to their trends established for 2015 to 2019.Six air pollutants considered are:ozone,carbon monoxide,nitrogen dioxide,sulfur dioxide,benzene and particulate matter less than 2.5 micrometres.These pollutants are assessed individually and in terms of CLAB,and their 2020 variations for Dallas County compared to daily trends established for years 2015 to 2019.Reductions in benzene and carbon monoxide during much of 2020 are clearly discernible compared to preceding years.The CLAB indicator shows clear seasonal trends for air quality for 2015 to 2019 with high pollution in winter and spring compared to other seasons that is strongly influenced by climatic variations with some anthropogenic inputs.Conducting CLAB analysis on an ongoing basis,using a relevant near-past time interval for benchmarking that covers several years,can reveal useful monthly,seasonal and annual trends in overall air quality.This type of medium-term,benchmarked air quality data analysis is well suited for ecosystem monitoring.
基金supported by the National Key Research and Development Program of China (2022ZD0114900).
文摘The release of the generative pre-trained transformer(GPT)series has brought artificial general intelligence(AGI)to the forefront of the artificial intelligence(AI)field once again.However,the questions of how to define and evaluate AGI remain unclear.This perspective article proposes that the evaluation of AGI should be rooted in dynamic embodied physical and social interactions(DEPSI).More specifically,we propose five critical characteristics to be considered as AGI benchmarks and suggest the Tong test as an AGI evaluation system.The Tong test describes a value-and ability-oriented testing system that delineates five levels of AGI milestones through a virtual environment with DEPSI,allowing for infinite task generation.We contrast the Tong test with classical AI testing systems in terms of various aspects and propose a systematic evaluation system to promote standardized,quantitative,and objective benchmarks and evaluation of AGI.
基金King Saud University for funding this research through Researchers Supporting Program Number(RSPD2023R704),King Saud University,Riyadh,Saudi Arabia.
文摘This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm.
基金supported in part by National Natural Science Foundation of China(62106230,U23A20340,62376253,62176238)China Postdoctoral Science Foundation(2023M743185)Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications Open Fundation(BDIC-2023-A-007)。
文摘In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions.
基金Ministry of Education,Singapore,under AcRF TIER 1 Grant RG64/23the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship,a Schmidt Futures program,USA.
文摘Multi-agent reinforcement learning(MARL)has been a rapidly evolving field.This paper presents a comprehensive survey of MARL and its applications.We trace the historical evolution of MARL,highlight its progress,and discuss related survey works.Then,we review the existing works addressing inherent challenges and those focusing on diverse applications.Some representative stochastic games,MARL means,spatial forms of MARL,and task classification are revisited.We then conduct an in-depth exploration of a variety of challenges encountered in MARL applications.We also address critical operational aspects,such as hyperparameter tuning and computational complexity,which are pivotal in practical implementations of MARL.Afterward,we make a thorough overview of the applications of MARL to intelligent machines and devices,chemical engineering,biotechnology,healthcare,and societal issues,which highlights the extensive potential and relevance of MARL within both current and future technological contexts.Our survey also encompasses a detailed examination of benchmark environments used in MARL research,which are instrumental in evaluating MARL algorithms and demonstrate the adaptability of MARL to diverse application scenarios.In the end,we give our prospect for MARL and discuss their related techniques and potential future applications.
基金The National Science Fund for Distinguished Young Scholars,Grant/Award Number:52325703IEEE Power and Energy Society Working Group on Test Systems for Economic Analysis。
文摘The selection of suitable models and solutions is a fundamental requirement for con-ducting energy flow analysis in integrated energy systems(IES).However,this task is challenging due to the vast number of existing models and solutions,making it difficult to comprehensively compare scholars'studies with current work.In this paper,we aim to address this issue by presenting a comprehensive overview of mainstream IES models and clarifying their relationships,thereby providing guidance for scholars in selecting appro-priate models.Additionally,we introduce several widely used solvers for solving algebraic and differential equations,along with their detailed implementations in the energy flow analysis of IES.Furthermore,we conduct extensive testing and demonstration of these models and methods in various cases to establish benchmarking datasets.To facilitate reproducibility,verification and comparisons,we provide open‐source access to these datasets,including system data,analysis settings and implementations of the various solvers in the mainstream models.Scholars can utilise the provided datasets to reproduce the results,verify the findings and perform comparative analyses.Moreover,they have the flexibility to customise these settings according to their specific requirements.