期刊文献+
共找到25,253篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancement of bending toughness for Fe-based amorphous nanocrystalline alloy with deep cryogenic-cycling treatment
1
作者 Yi-ran Zhang Dong Yang +5 位作者 Qing-chun Xiang Hong-yu Liu Jing Pang Ying-lei Ren Xiao-yu Li Ke-qiang Qiu 《China Foundry》 2025年第1期99-107,共9页
The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were inves... The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were investigated.The DCT samples were obtained by subjecting the as-annealed samples to a thermal cycling process between the temperature of the supercooled liquid zone and the temperature of liquid nitrogen.Through flat plate bending testing,hardness measurements,and nanoindentation experiment,it is found that the bending toughness of the DCT samples is improved and the soft magnetic properties are also slightly enhanced.These are attributed to the rejuvenation behavior of the DCT samples,which demonstrate a higher enthalpy of relaxation.Therefore,DCT is an effective method to enhance the bending toughness of Fe-based amorphous nanocrystalline alloys without degrading the soft magnetic properties. 展开更多
关键词 deep cryogenic-cycling treatment Fe-based amorphous nanocrystalline alloy bending toughness REJUVENATION
下载PDF
A smart finger patch with coupled magnetoelastic and resistive bending sensors
2
作者 Ziyi Dai Mingrui Wang +4 位作者 Yu Wang Zechuan Yu Yan Li Weidong Qin Kai Qian 《Journal of Semiconductors》 2025年第1期194-203,共10页
In the era of Metaverse and virtual reality(VR)/augmented reality(AR),capturing finger motion and force interactions is crucial for immersive human-machine interfaces.This study introduces a flexible electronic skin f... In the era of Metaverse and virtual reality(VR)/augmented reality(AR),capturing finger motion and force interactions is crucial for immersive human-machine interfaces.This study introduces a flexible electronic skin for the index finger,addressing coupled perception of both state and process in dynamic tactile sensing.The device integrates resistive and giant magnetoelastic sensors,enabling detection of surface pressure and finger joint bending.This e-skin identifies three phases of finger action:bending state,dynamic normal force and tangential force(sweeping).The system comprises resistive carbon nanotubes(CNT)/polydimethylsiloxane(PDMS)films for bending sensing and magnetoelastic sensors(NdFeB particles,EcoFlex,and flexible coils)for pressure detection.The inward bending resistive sensor,based on self-assembled microstructures,exhibits directional specificity with a response time under 120 ms and bending sensitivity from 0°to 120°.The magnetoelastic sensors demonstrate specific responses to frequency and deformation magnitude,as well as sensitivity to surface roughness during sliding and material hardness.The system’s capability is demonstrated through tactile-based bread type and condition recognition,achieving 92%accuracy.This intelligent patch shows broad potential in enhancing interactions across various fields,from VR/AR interfaces and medical diagnostics to smart manufacturing and industrial automation. 展开更多
关键词 human machine interface flexible sensor wearable sensor giant magnetoelastic effect inward bending sensor
下载PDF
Fracture behavior of sandstone with partial filling flaw under mixed-mode loading: Three-point bending tests and discrete element method
3
作者 Dongdong Ma Yu Wu +4 位作者 Xiao Ma Xunjian Hu Wenbao Dong Decheng Li Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期291-308,共18页
The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate betwee... The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate between open fractures and filled fractures,the fracture response may be worth exploring.In this work,the effect of the filling property of sandstone with partial filling flaws on the fracture behavior was systematically investigated based on three-point bending tests and the numerical approach of discrete element method(DEM).In the laboratory,semi-circular three-point bending tests were carried out with partial filling flaws of various filling strengths.Based on this,numerical simulations were used to further investigate the effect of the filling ratio and the inclination of the partial filling flaw on the mechanical and fracture responses,and the effect of the partial filling flaw under mixed-mode loading on the fracture mechanism was elucidated coupled with acoustic emission(AE)characteristics.The obtained results showed that the increase in filling strength and filling ratio of partial filling flaw led to an increase in peak strength,with a decreasing trend in peak strength with the inclination of partial filling flaw.In terms of crack propagation pattern,the increasing filling strength of the partial filling flaw induced the transformation of the fracture mechanism toward deflection,with a tortuosity path,while the filling ratio and inclination of partial filling flaw led to fracture mechanism change from deflection to penetration and attraction,accompanied with a larger AE event source in filler.Accordingly,the b-value based on the Gutenberg-Richter equation fluctuated between 5 and 4 at low filling ratio and inclination and remained around 5 at high filling ratio and inclination of partial filling flaw.Related results may provide an application prospective for reservoir stimulation using the natural fracture system. 展开更多
关键词 Partial filling flaw Mixed-mode loading Semi-circular three-point bending Acoustic emission(AE) B-VALUE
下载PDF
Dynamic notched semi-circle bend(NSCB) method for measuring fracture properties of rocks:Fundamentals and applications 被引量:12
4
作者 Wei Yao Kaiwen Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第5期1066-1093,共28页
Rocks are increasingly used in extreme environments characterised by high loading rates and high confining pressures.Thus the fracture properties of rocks under dynamic loading and confinements are critical in various... Rocks are increasingly used in extreme environments characterised by high loading rates and high confining pressures.Thus the fracture properties of rocks under dynamic loading and confinements are critical in various rock mechanics and rock engineering problems.Due to the transient nature of dynamic loading,the dynamic fracture tests of rocks are much more challenging than their static counterparts.Understanding the dynamic fracture behaviour of geomaterials relies significantly on suitable and reliable dynamic fracture testing methods.One of such methods is the notched semi-circle bend(NSCB)test combined with the advanced split Hopkinson pressure bar(SHPB)system,which has been recommended by the International Society for Rock Mechanics and Rock Engineering(ISRM)as the standard method for the determination of dynamic fracture toughness.The dynamic NSCB-SHPB method can provide detailed insights into dynamic fracture properties including initiation fracture toughness,fracture energy,propagation fracture toughness and fracture velocity.This review aims to fully describe the detailed principles and state-of-the-art applications of dynamic NSCB-SHPB techniques.The history and principles of dynamic NSCB-SHPB tests for rocks are outlined,and then the applications of dynamic NSCB-SHPB method(including the measurements of initiation and propagation fracture toughnesses and the limiting fracture velocity,the size effect and the digital image correlation(DIC)experiments)are discussed.Further,other applications of dynamic NSCB-SHPB techniques(i.e.the thermal,moisture and anisotropy effects on the dynamic fracture properties of geomaterials,and dynamic fracture toughness of geomaterials under pre-loading and hydrostatic pressures)are presented. 展开更多
关键词 ROCKS Split Hopkinson pressure bar(SHPB) Notched semi-circle bend(nscb) High loading rate DYNAMIC FRACTURE
下载PDF
基于IP联合蛋白质组学探讨ENG互作蛋白在bEnd.3细胞中的作用
5
作者 陈清杰 李奥迪 +4 位作者 季慧敏 孙艺瑄 蒋越 叶子奇 潘荣 《湖北科技学院学报(医学版)》 2024年第6期461-466,F0002,共7页
目的本研究拟筛选并验证在脑微血管内皮细胞(bEnd.3)中Endoglin(ENG)的互作蛋白及其作用。方法采用蛋白质组学和生物信息学技术鉴定并富集ENG互作蛋白,对这些互作蛋白进行亚细胞定位、GO功能注释、IPR注释和蛋白互作网络等分析。将以上... 目的本研究拟筛选并验证在脑微血管内皮细胞(bEnd.3)中Endoglin(ENG)的互作蛋白及其作用。方法采用蛋白质组学和生物信息学技术鉴定并富集ENG互作蛋白,对这些互作蛋白进行亚细胞定位、GO功能注释、IPR注释和蛋白互作网络等分析。将以上分析筛选出的ENG互作蛋白,采用免疫共沉淀(IP)实验、细胞免疫荧光(IF)和蛋白免疫印迹(WB)技术进行验证和对比,探究ENG互作蛋白在棕榈酸(PA)、基因沉默和过表达ENG处理bEnd.3细胞中的表达变化及作用。结果通过蛋白质组学分析,bEnd.3细胞中ENG互作蛋白在亚细胞定位分析中细胞骨架相关成分呈现出较高的占比;通过GO注释和IPR注释进一步发现,是细胞骨架中的中间纤维和微丝蛋白呈现较高的富集状态。ENG与细胞骨架蛋白互作热力图结果显示,与对照组相比,PA处理的bEnd.3细胞中微丝蛋白Filamin B(Flnb)数值显著降低。IP和IF结果显示,bEnd.3细胞中ENG与Flnb存在蛋白互作和共定位情况。WB结果显示,bEnd.3细胞在PA处理条件下,ENG和Flnb蛋白表达均下降;在ENG沉默条件下,Flnb蛋白随ENG表达的减少而降低;在ENG过表达条件下,Flnb蛋白随ENG表达的增加而升高。结论ENG互作蛋白广泛参与到多种相关的生物途径以及信号通路之中,ENG在bEnd.3细胞中与Flnb蛋白存在相互作用且二者具有共定位现象,ENG还能够调控PA处理的bEnd.3细胞Flnb蛋白表达水平。 展开更多
关键词 ENG Flnb 互作蛋白 bend.3 棕榈酸
下载PDF
Experimental,Numerical,and Analytical Studies on the Bending of Mechanically Lined Pipe 被引量:1
6
作者 WEI Wen-bin YUAN Lin +1 位作者 ZHOU Jia-sheng LIU Zheng 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期221-232,共12页
Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau... Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results. 展开更多
关键词 lined pipe bendING nonlinear ring theory BUCKLING PLASTICITY
下载PDF
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys 被引量:1
7
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 Mg–Al alloy EXTRUSION bendING Precipitation Microstructure
下载PDF
基于p38MAPK-PPARγ/NF-κB信号通路探讨消肿止痛合剂对血管内皮细胞bEND-3凋亡的影响 被引量:1
8
作者 朱克玉 宋渊 +4 位作者 梁旭东 沈稼轩 张团庄 乔靖 刘涛 《辽宁中医杂志》 CAS 北大核心 2024年第4期149-152,I0002,共5页
目的从细胞及信号通路层面探讨消肿止痛合剂对皮瓣缺血再灌注损伤中血管内皮细胞凋亡的影响。方法血管内皮细胞bEND-3培养。TNF-α体外细胞凋亡诱导模型建立并将细胞分为:p38MAPK抑制剂组、PPARγ抑制剂组、NF-κB抑制剂组、模型对照组... 目的从细胞及信号通路层面探讨消肿止痛合剂对皮瓣缺血再灌注损伤中血管内皮细胞凋亡的影响。方法血管内皮细胞bEND-3培养。TNF-α体外细胞凋亡诱导模型建立并将细胞分为:p38MAPK抑制剂组、PPARγ抑制剂组、NF-κB抑制剂组、模型对照组、空白组。微丝绿色荧光探针观察细胞骨架微丝。RT-PCR法检测血管内皮细胞bEND-3细胞中p38MAPK、PPARγ、IκBα、NF-κBmRNA的表达。结果空白组中p38MAPK、PPARγ、IκBα、NF-κB的表达量无明显差异,模型对照组中p38MAPK与NF-κB的表达量最高,与模型对照组相比,p38MAPK抑制剂组bEnd.3细胞中p38MAPK与NF-κB的表达被抑制,PPARγ、IκBα表达量升高(P<0.05);PPARγ抑制剂组中PPARγ、IκBα、NF-κB的表达被抑制,p38MAPK表达量升高(P<0.05),NF-κB抑制剂组中p38MAPK与NF-κB的表达被抑制,IκBα与PPARγ的表达量升高(P<0.05);与空白组相比,p38MAPK抑制剂组与NF-κB抑制剂组中p38MAPK、PPARγ、IκBα、NF-κB的表达量升高(P<0.05),PPARγ抑制剂组中p38MAPK与NF-κB表达量明显升高,PPARγ、IκBα表达被抑制(P<0.05)。结论消肿止痛合剂可抑制bEND-3细胞凋亡,其机制与影响可能与p38MAPK-PPARγ/NF-κB信号通路有关。 展开更多
关键词 消肿止痛合剂 bend-3细胞 信号通路 皮瓣
下载PDF
Fabrication of lightweight 3D interpenetrated NiTi@Mg composite with superior bending properties
9
作者 Yu-jing LIU Xiao-chun LIU +4 位作者 Kun-mao LI Xiang WU Sheng-feng ZHOU Wei LI Wen-cai ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3569-3584,共16页
A NiTi@Mg interpenetrating phase composite with high strength and lightweight was prepared by additive manufacturing(AM)and infiltration technology,and the interface bonding,three-point bending properties and cyclic c... A NiTi@Mg interpenetrating phase composite with high strength and lightweight was prepared by additive manufacturing(AM)and infiltration technology,and the interface bonding,three-point bending properties and cyclic compressive properties of NiTi@Mg composites were investigated.The results show that the metallurgically bonded interface is formed at the NiTi/Mg interfaces.The bending strength and compressive strength of the NiTi@Mg composite are 2.5 and 1.7 times higher than those of the NiTi scaffold,respectively.During the bending deformation process,a large number of dislocations are observed to accumulate in the soft Mg area at the interface.Furthermore,the finite element model showed that the stress accumulation area,where the bending crack is initiated,is located at the interface of NiTi and Mg.The strengthening mechanism of NiTi@Mg composites is attributed to the twinning strengthening of Mg and heterogeneous structure strengthening. 展开更多
关键词 metal composites NiTi@Mg bending properties finite element simulation strengthening mechanism
下载PDF
Discharge evolution law of debris flow based on a sharp bend physical modeling test
10
作者 LU Ming SUN Hao +3 位作者 LIU Jinfeng Abrar HUSSAIN SHANG Yuqi FU Hang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1904-1915,共12页
For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,th... For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,this study aims to analyze the shear force of debris flows within the bend channel.We established the relationship between the shear force and bend curvature through laboratory experiments.Under the long-term erosion by debris flows,the curvature radius of bends gradually increases,however,when this increasing trend reaches an equilibrium state with the intensity of debris flow discharge,there will be no significant change in curvature radius.In general,the activity pattern and discharges of debris flows would remain relatively stable.Hence,we can infer the magnitude of debris flow discharges from the terrain parameters of the bend channel. 展开更多
关键词 Debris flow discharge Erosion effect bend channel Curvature radius
下载PDF
Bending Failure Mode and Prediction Method of the Compressive Strain Capacity of A Submarine Pipeline with Dent Defects
11
作者 HOU Fu-heng JIA Lu-sheng +3 位作者 CHEN Yan-fei ZHANG Qi ZHONG Rong-feng WANG Chun-sha 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期636-647,共12页
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression... A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline. 展开更多
关键词 submarine pipeline dent defect bending load local buckling compressive strain capacity
下载PDF
Bending Strength of Glass Materials under Strong Dynamic Impact and Its Strain Rate Effects
12
作者 LIU Xiaogen QI Shuang +2 位作者 WEI Shaoshan WAN Detian JIN Chunxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1358-1364,共7页
Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif... Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading. 展开更多
关键词 glass materials strong dynamic impact bending strength strain rate effect dynamic enhancement factor
下载PDF
Cryogenic springback of 2219-W aluminum alloy sheet through V-shaped bending
13
作者 Xiao-bo FAN Qi-liang WANG +1 位作者 Fang-xing WU Xu-gang WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3185-3193,共9页
A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism w... A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism was elucidated through mechanical analyses and numerical simulations.The results indicated that the springback angle at cryogenic temperatures was greater than that at room temperature.The springback angle increased further as the temperature returned to ambient conditions,attributed to the combined effects of the “dual enhancement effect” and thermal expansion.Notably,a critical fillet radius made the springback angle zero for 90° V-shaped bending.The critical fillet radius at cryogenic temperatures was smaller than that at room temperature,owing to the influence of temperature variations on the bending moment ratio between the forward bending section at the fillet and the reverse bending section of the straight arm. 展开更多
关键词 2219-W aluminum alloy cryogenic forming V-shape bending SPRINGBACK critical fillet radius
下载PDF
Analysis of deformation mechanisms in magnesium single crystals using a dedicated four-point bending tester
14
作者 Yutaka Yoshida Rikuto Izawa Kenji Ohkubo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1911-1917,共7页
In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending ... In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials. 展开更多
关键词 Four-point bending Magnesium single crystal TWINNING Basal slip Scanning electron microscopy Electron backscatter diffraction
下载PDF
Bending strength degradation of a cantilever plate with surface energy due to partial debonding at the clamped boundary
15
作者 Zhenliang HU Xueyang ZHANG Xianfang LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1573-1594,共22页
This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha... This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported. 展开更多
关键词 micro/nanoscale cantilever plate partially debonded bending fracture singular integral equation oscillatory singularity
下载PDF
A Light and Simplified Branch Bending Method for Young Pear Trees
16
作者 Jintao XU Longfei LI +3 位作者 Minghui JI Huan LIU Lijuan GAO Baofeng HAO 《Plant Diseases and Pests》 2024年第2期19-21,共3页
Aiming at high cost and low efficiency of conventional branch bending method in the modern intensive planting and labor-saving cultivation mode of young pear trees,this paper provides a new branch bending method with ... Aiming at high cost and low efficiency of conventional branch bending method in the modern intensive planting and labor-saving cultivation mode of young pear trees,this paper provides a new branch bending method with wide source of raw materials,cheap price and simple operation,which is also suitable for the management of low-age branches in the process of high grafting and upgrading of traditional big trees. 展开更多
关键词 Pear tree Light and simplified Branch bending METHOD
下载PDF
The Effects of the Longitudinal Axis of Loading upon Bending, Shear and Torsion of a Thin-Walled Cantilever Channel Beam
17
作者 David W. A. Rees Abdelraouf M. Sami Alsheikh 《World Journal of Mechanics》 2024年第5期73-96,共24页
Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoreticall... Three aluminium channel sections of US standard extruded dimension are mounted as cantilevers with x-axis symmetry. The flexural bending and shear that arise with applied axial torsion are each considered theoretically and numerically in terms of two longitudinal axes of loading not coincident with the shear centre. In particular, the warping displacements, stiffness and stress distributions are calculated for torsion applied to longitudinal axes passing through the section’s centroid and its web centre. The stress conversions derived from each action are superimposed to reveal a net sectional stress distribution. Therein, the influence of the axis position upon the net axial and shear stress distributions is established compared to previous results for each beam when loading is referred to a flexural axis through the shear centre. Within the net stress analysis is, it is shown how the constraint to free warping presented by the end fixing modifies the axial stress. The latter can be identified with the action of a ‘bimoment’ upon each thin-walled section. 展开更多
关键词 Thin-Aluminium Channels Cantilever Beam bending Shear Torsion WARPING BIMOMENT Flexural Axis Centre of Twist CENTROID Shear Centre Torsional Stiffness Constrained Stress
下载PDF
Prediction of seismic-induced bending moment and lateral displacement in closed and open-ended pipe piles:A genetic programming approach
18
作者 Laith Sadik Duaa Al-Jeznawi +2 位作者 Saif Alzabeebee Musab A.Q.Al-Janabi Suraparb Keawsawasvong 《Artificial Intelligence in Geosciences》 2024年第1期82-95,共14页
Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address... Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types. 展开更多
关键词 Genetic programming Pipe piles Lateral response bending moment Earthquake loading Standard penetration test Machine learning
下载PDF
板柱节点考虑弯剪相关性的受冲切承载力计算方法
19
作者 郑文忠 吕盛先 +1 位作者 郑博文 王英 《哈尔滨工业大学学报》 EI CAS 北大核心 2025年第1期65-76,共12页
对于同时受到竖向荷载和不平衡弯矩作用的板柱节点,目前已有方法大多将不平衡弯矩等效为竖向荷载,从而给出其受冲切承载力计算方法。但该方法所涉及的不平衡弯矩比例系数的计算还存在较大争议,且没有考虑竖向荷载与不平衡弯矩耦合的影... 对于同时受到竖向荷载和不平衡弯矩作用的板柱节点,目前已有方法大多将不平衡弯矩等效为竖向荷载,从而给出其受冲切承载力计算方法。但该方法所涉及的不平衡弯矩比例系数的计算还存在较大争议,且没有考虑竖向荷载与不平衡弯矩耦合的影响。因此,本文首先通过推导给出仅有竖向荷载作用的板柱节点受冲切承载力计算公式和仅有不平衡弯矩作用的板柱节点受弯承载力计算公式,并与试验结果进行对比,验证了所提公式的合理性。然后基于板柱节点在竖向荷载和不平衡弯矩共同作用下的试验结果,拟合得到板柱节点考虑弯剪相关性的受冲切承载力计算公式。最后对所提计算方法与不同规范计算方法进行对比,结果表明本文计算方法能够更加准确地预测板柱节点受冲切承载力。 展开更多
关键词 板柱节点 竖向荷载 不平衡弯矩 受冲切承载力 计算方法
下载PDF
多腔室复合弯曲气动网格软体驱动器解析建模与实验研究
20
作者 王福军 许东方 +1 位作者 王煜仲 梁存满 《天津大学学报(自然科学与工程技术版)》 北大核心 2025年第3期285-292,共8页
软体机器人具有灵活度高、人机交互安全等优势,在操作易碎物体和非结构化环境中具有广阔应用前景.气动软体驱动器是构建软体机器人的重要部件之一,其特性直接影响到软体机器人的性能.针对气动网格型软体驱动器,从腔室侧壁膨胀角和驱动... 软体机器人具有灵活度高、人机交互安全等优势,在操作易碎物体和非结构化环境中具有广阔应用前景.气动软体驱动器是构建软体机器人的重要部件之一,其特性直接影响到软体机器人的性能.针对气动网格型软体驱动器,从腔室侧壁膨胀角和驱动器弯曲角度的非线性关系出发,基于赫兹接触理论和Yeoh超弹性不可压缩材料的非线性本构方程,建立了多腔室气动网格软体驱动器的准静态力学模型.该模型考虑了超弹性材料变形和多腔室侧壁膨胀接触几何非线性特点,能够准确描述不同输入气压与驱动器弯曲角度和顶端输出力的关系.根据仿生思想设计了一种多腔室复合弯曲多腔室气动网格驱动器结构,并基于该结构分别通过有限元仿真和实验对提出的解析模型进行验证.结果表明,解析模型计算结果与有限元仿真结果、实验结果最大差异均不超过10%.该气动网格软体驱动器解析模型具有较好的准确性. 展开更多
关键词 气动软体驱动器 理论模型 弯曲角度 顶端输出力 实验验证
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部