The effect of frictions between dies and tube on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical analysis and experi...The effect of frictions between dies and tube on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical analysis and experiment. The results show that the frictions between mandrel, wiper, pressure die, bending die and tube have a significant and complicate effect on the section quality of thin-walled tube NC bending. To improve the section quality, frictions between mandrel, wiper and tube should be decreased, but the frictions between the pressure die, bending die and tube increase. The effect on the section distortion is more significant from mandrel, wiper, pressure die to bending die and the effect on the wall thinning more significant from mandrel, pressure die, wiper, to bending die. The effects of frictions between all dies and tube on wall thinning are smaller than their effects on section distortion. Mandrel and wiper should be lubricated well and drawing oil is used to lubricate them in actual production. The frictions between pressure die, bending die and tube should be increased and the dry friction is used between pressure die, bending die and tube in actual production.展开更多
The effect of mandrel with the structure of ball and socket on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical (anal...The effect of mandrel with the structure of ball and socket on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical (analysis) and experiment. Influencing factors of the mandrel include the count of mandrel heads, the diameter of mandrel and its position. According to the principle of NC tube bending, quality defects possibly produced in thin-walled tube NC bending process were analyzed and two parameters were proposed in order to describe the cross section quality of thin-walled tube NC bending. According to the geometrical dimension of tube and dies, the range of mandrel protrusion was derived. The finite element model of thin-walled tube NC bending was established based on the DYNAFORM platform, and key technological problems were solved. The model was verified by experiment. The effect of the number of mandrel heads, the diameter of mandrel and the protrusion length of mandrel on the cross section quality of thin-walled tube NC bending was revealed and how to choose mandrel parameters was presented.展开更多
The objective of the present paper is to introduce a theoretical analysis of bending I-sections after pure bending. The springback values are determined to provide a quantitative method for predicting the springback u...The objective of the present paper is to introduce a theoretical analysis of bending I-sections after pure bending. The springback values are determined to provide a quantitative method for predicting the springback using von Mises criteria. The analytical methods for the I-section are given for two cases according to the positions of the yield point along the height of the beam. The controlling parameters on the springback of I-sections are studied. The results obtained are quite successful for the prediction of springback for bending I-sections.展开更多
In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the b...In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.展开更多
This article proposes use of extruded compound materials with optimized resistant cross-sections as an alternative, in this case, seeking the maximum energy density as a design criterion. The advantage of this proposa...This article proposes use of extruded compound materials with optimized resistant cross-sections as an alternative, in this case, seeking the maximum energy density as a design criterion. The advantage of this proposal is that it extends the life cycle and decreases fatigue issues.展开更多
基金Project(50225518) supported by the National Science Foundation of China for Distinguished Young Scholars Projects(50175092+4 种基金 59975076) supported by the National Natural Science Foundation of China Project supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, China Project(04H53057) supported by the Aeronautical Science Foundation of China Project(20020699002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China Project(Z200518) supported by the Graduate Starting Seed Fund of Northwestern Polytechnical University, China
文摘The effect of frictions between dies and tube on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical analysis and experiment. The results show that the frictions between mandrel, wiper, pressure die, bending die and tube have a significant and complicate effect on the section quality of thin-walled tube NC bending. To improve the section quality, frictions between mandrel, wiper and tube should be decreased, but the frictions between the pressure die, bending die and tube increase. The effect on the section distortion is more significant from mandrel, wiper, pressure die to bending die and the effect on the wall thinning more significant from mandrel, pressure die, wiper, to bending die. The effects of frictions between all dies and tube on wall thinning are smaller than their effects on section distortion. Mandrel and wiper should be lubricated well and drawing oil is used to lubricate them in actual production. The frictions between pressure die, bending die and tube should be increased and the dry friction is used between pressure die, bending die and tube in actual production.
文摘The effect of mandrel with the structure of ball and socket on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical (analysis) and experiment. Influencing factors of the mandrel include the count of mandrel heads, the diameter of mandrel and its position. According to the principle of NC tube bending, quality defects possibly produced in thin-walled tube NC bending process were analyzed and two parameters were proposed in order to describe the cross section quality of thin-walled tube NC bending. According to the geometrical dimension of tube and dies, the range of mandrel protrusion was derived. The finite element model of thin-walled tube NC bending was established based on the DYNAFORM platform, and key technological problems were solved. The model was verified by experiment. The effect of the number of mandrel heads, the diameter of mandrel and the protrusion length of mandrel on the cross section quality of thin-walled tube NC bending was revealed and how to choose mandrel parameters was presented.
文摘The objective of the present paper is to introduce a theoretical analysis of bending I-sections after pure bending. The springback values are determined to provide a quantitative method for predicting the springback using von Mises criteria. The analytical methods for the I-section are given for two cases according to the positions of the yield point along the height of the beam. The controlling parameters on the springback of I-sections are studied. The results obtained are quite successful for the prediction of springback for bending I-sections.
基金Supported by the National Natural Science Foundation of China(50805009)Twelve Five-Year Plan Basic Research Item of National Defense of China(A2220110008)
文摘In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending.
文摘This article proposes use of extruded compound materials with optimized resistant cross-sections as an alternative, in this case, seeking the maximum energy density as a design criterion. The advantage of this proposal is that it extends the life cycle and decreases fatigue issues.