期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Spring-back deformation in tube bending 被引量:10
1
作者 Da-xin E Hua-hui He Xiao-yi Liu Ru-xin Ning 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第2期177-183,共7页
The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that ... The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that the mechanical properties of the material (in a tubular form) are quite different from those found in the standard tensile tests (when the materials are in bar forms). This is one of the major reasons that result in the discrepancies in the outcomes of experimental study, FEM calculations, and spring-back analysis. It is therefore of crucial importance to study the mechanical properties of the materials in their tubular forms. The experiments and FEM simulations prove that the spring-back angle is significantly affected by the mechanical properties of the materials. The angle decreases accordingly with plastic modulus, but changes inversely with the hardening index and elastic modulus The spring-back angle is also affected by the conditions of tube deformation: it increases accordingly with the relative bending radius but changes inversely with the relative wall thickness. In addition, the spring-back angle increases nonlinearly with the bending angle. 展开更多
关键词 tube bending SPRING-BACK finite element simulation tensile test
下载PDF
Integrated Systemfor Tube Bending Digital Manufacturing 被引量:2
2
作者 吕波 唐承统 +1 位作者 宁汝新 宋月英 《Journal of Beijing Institute of Technology》 EI CAS 2006年第2期127-132,共6页
An integrated CAD/CAPP/CAM system of tube manufacturing based on integration frame is presented. In this system, two kinds of data conventions describing tube shape are presented in tube CAD subsystem, the object-orie... An integrated CAD/CAPP/CAM system of tube manufacturing based on integration frame is presented. In this system, two kinds of data conventions describing tube shape are presented in tube CAD subsystem, the object-oriented concept and the goal-driven inference mechanism have been applied in the development of the knowledge-based CAPP subsystem and simulation of tube processing under tube bending simulation subsystem is performed based on the tube model's piecewise representation. A tube product case is considered to give the application of the integrated system, and the advantages of the system in the use of tube bending are revealed. 展开更多
关键词 numerical control (NC) tube bending CAD/CAPP/CAM integration process decision bending simulation
下载PDF
Analysis and experiment of cross-section flattening incoreless tube bending
3
作者 贾美慧 唐承统 刘检华 《Journal of Beijing Institute of Technology》 EI CAS 2014年第1期37-41,共5页
In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the b... In order to predict the flattening rate of the cross-section accurately during the tube ben- ding, the generation principle, the solution and the influence factor of the cross-section flattening were studied. On the basis of the plane-stress and the assumption that the plastic volume is con- stant, three-dimensionai strain formulas were established in consider of the cross-section flattening. Considering the wail-thickness change, the approximate calculation formulas of short axis flattening rate were deduced, with the outer diameter and the inner diameter as parameters. Because different materials have different cross-section flattening rates, a material correction factor was introduced to modify the formula based on experiments. Finally, the validity of the theoretical formulas was proved according to the calculation and the experiment results, which can provide a reference for the forming quality prediction in tube bending. 展开更多
关键词 coreless tube bending cross-section flattening wall-thickness variation change-rate ofshort axis
下载PDF
OPTIMIZATION OF SHEET METAL FORMING PROCESSES USING FINITE ELEMENT SIMULATIONS 被引量:1
4
作者 K. B. Nielsen, M. R. Jensen and J. Danckert Department of Production, Aalborg University, Denmark 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期531-539,共9页
The paper focuses on the combination of the Finite Element simulation and optimization to improve process or product quality. Three different examples to illustrate the developed genetic approach are given. In all th... The paper focuses on the combination of the Finite Element simulation and optimization to improve process or product quality. Three different examples to illustrate the developed genetic approach are given. In all three examples is-DYNA3D is used to simulate the process and a general aptimiza- tion sensitivity based strategy is utilized to improve the design. The included examples are: 1) stretch bending of tubes, 2) bulging of tubes, and finally 3) hydromechanical deep drawing. these examples clearly illustrate the potential of systematic optimization in the area of metal processing. 展开更多
关键词 finite element method hydroforming of tubes hydromechanical deep drawing LS-DYNA3D tube bending
下载PDF
Advances and Trends on Tube Bending Forming Technologies 被引量:88
5
作者 YANG He LI Heng +3 位作者 ZHANG Zhiyong ZHAN Mei LIU Jing LI Guanjun 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第1期1-12,共12页
As one kind of key components with enormous quantities and diversities, the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects. The bent tu... As one kind of key components with enormous quantities and diversities, the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects. The bent tubes have been widely used in many high-end industries such as aviation, aerospace, shipbuilding, automobile, energy and health care. The tube bending has become one of the key manufacturing technologies for lightweight product forming. Via the analysis of bending characteristics and multiple defects, advances on exploring the common issues in tube bending are summarized regarding wrinkling instability at the intrados, wall thinning (cracking) at the extrados, springback phenomenon, cross-section deformation, forming limit and process/ tooling design/optimization. Some currently developed bending techniques are reviewed in terms of their advantages and limitations. Finally, in view of the urgent requirements of high-performance complex bent tube components with difficult-todeform and lightweight materials in aviation and aerospace fields, the development trends and corresponding challenges are presented for realizing the precise and high-efficiency tube bending deformation. 展开更多
关键词 tube bending FORMING LIGHTWEIGHT high strength defects AVIATION aerospace
原文传递
Plastic deformation analysis and forming quality prediction of tube N C bending 被引量:18
6
作者 Lu Shiqiang Fang Jun Wang Kelu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1436-1444,共9页
Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer... Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and crosssection distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to auicklv predict the forming aualitv of tube numerical control (NC) bending. 展开更多
关键词 Forming quality Plane strain tube NC bending Theoretical analysis Virtual work principle
原文传递
An improved procedure for manufacture of 3D tubes with springback concerned in flexible bending process 被引量:8
7
作者 Jianjun WU Zengkun ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第11期267-276,共10页
Three dimensional(3D)tubes,which possess the characteristics of space saving,lightweight and high strength,are widely used in many high-end industries such as aviation,aerospace,automobile and shipbuilding.However,whe... Three dimensional(3D)tubes,which possess the characteristics of space saving,lightweight and high strength,are widely used in many high-end industries such as aviation,aerospace,automobile and shipbuilding.However,when manufacturing a 3D tube in flexible bending process,springback is a big obstacle for improving the forming quality.In this paper,a new comprehensive strategy for springback control of 3D tubes is proposed.The strategy can be described as follows:(1)define the desired shape and manufacture shape;(2)optimize the manufacture shape using two tooling design methods(e.g.DA(displacement adjustment)method and B&T(bending and twisting)method presented in this paper);(3)make a discretization of the manufacture shape to acquire the optimized forming parameters.Additionally,experiment is implemented to validate the effectiveness of the new strategy.Results show that forming parameters acquired by the new strategy are partially effective.The new strategy also demonstrates that,during 3D tubes forming,the deviation caused by over-bent elements can be counteracted by the deficient-bent elements.This principle is helpful to reduce the difficulty of parameter determination in future. 展开更多
关键词 Bending and twisting 3D tube Finite element modelling Materials forming Springback compensation tube bending
原文传递
‘Size effect’ related bending formability of thin-walled aluminum alloy tube 被引量:16
8
作者 Li Heng Yang He +1 位作者 Zhang Zhiyong Wang Zekang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第1期230-241,共12页
Aluminum alloy (Al-alloy) thin-walled (D/t &gt; 20, diameter D, wall thickness t) bent tubes have attracted increasing applications in many industries with mass quantities and diverse specifications due to satisf... Aluminum alloy (Al-alloy) thin-walled (D/t &gt; 20, diameter D, wall thickness t) bent tubes have attracted increasing applications in many industries with mass quantities and diverse specifications due to satisfying high strength to weigh ratio requirements of product manufacturing. However, due to nonlinear nature of bending with coupling effects of multiple factors, the similarity theory seems not applicable and there occurs a challenge for efficient and reliable evaluation of the bending formability of thin-walled tube with various bending specifications. Considering the unequal deformation and three major instabilities, the bending formability of thin-walled Al-alloy tube in changing tube sizes such as D and t are clarified via both the analytical and FE modeling/ simulations. The experiments of rotary draw bending are conducted to validate the theoretical models and further confirm 'size effect' related bending formability. The major results show that (1) The anti-wrinkling capability of tube decreases with the larger D and smaller t, and the effect significance of t is larger than that of D even under rigid supports; (2) The wall thinning increases with the larger D and smaller t, and this tendency becomes much more obvious under rigid supports; (3) The cross-section deformation increases with the larger D and smaller t according to the analytical model obtained intrinsic relationship, while this tendency becomes opposite due to the nonlinear role of mandrel die; (4) The size factor D/t can be used as a nondimensional index to evaluate both the bending formability regarding the wall thinning and cross-section deformation. 展开更多
关键词 Al-alloy Bending formability Flattening Size effect tube bending Wall thinning Wrinkling
原文传递
Effects of geometrical parameters on wrinkling of thin-walled rectangular aluminum alloy wave-guide tubes in rotary-draw bending 被引量:8
9
作者 Tian Shan Liu Yuli Yang He 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第1期242-248,共7页
Inner flange and side wrinkling often occur in rotary-draw bending process of rectangular aluminum alloy wave-guide tubes, and the distribution and magnitude of wrinkling is related to geometrical parameters of the tu... Inner flange and side wrinkling often occur in rotary-draw bending process of rectangular aluminum alloy wave-guide tubes, and the distribution and magnitude of wrinkling is related to geometrical parameters of the tubes. In order to study the effects of geometrical parameters on wrinkling of rectangular wave-guide tubes, a 3D-FE model for rotary-draw bending processes of thin-walled rectangular aluminum alloy wave-guide tubes was built based on the platform of ABA-QUS/Explicit, and its reliability was validated by experiments. Simulation and analysis of the influence laws of geometrical parameters on the wave heights of inner flange and side wrinkling were then carried out. The results show that inner flange wrinkling is the main wrinkling way to rectan- gular wave-guide tubes in rotary-draw bending processes, but side wrinkling cannot be neglected because side wrinkling is 2/3 of inner flange wrinkling when b and h are smaller. Inner flange and side wrinkling increase with increasing b and h; the influence of b on side wrinkling is larger than that of h, while both b and h affect inner flange wrinkling greatly. Inner flange and side wrinkling decrease with increasing R/h; the influence of h on inner flange and side wrinkling is larger than that of R. 展开更多
关键词 Geometrical parameters Inner flange wrinkling Side wrinkling Simulation Thin-walled rectangular wave-guide tube Rotary-draw bending
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部