The objective of this research is to evaluate an impact of asphalt mixture beams with varying sizes of aggregate in the Bending Beam Rheometer (BBR) for testing/predicting thermal cracking properties of asphalt pave...The objective of this research is to evaluate an impact of asphalt mixture beams with varying sizes of aggregate in the Bending Beam Rheometer (BBR) for testing/predicting thermal cracking properties of asphalt pavements. The BBR test has following benefits: the equipment is cheaper, it uses smaller specimens, faster conditioning, easier availability for quality control, easier to manage, etc. However some concerns have been raised: some consider that the size of the aggregate may affect the test's results; the other concern is that such small beams cannot represent the whole properties of the asphalt pavement. To address these criticisms, imaging techniques, statistical analysis, and viscoelastic modeling are used. Asphalt thin beams prepared with three different nominal maximum aggregate size (NMAS) (12.5mm, 9.5 mm, and 4.75 mm) were tested at three different temperatures (-18℃, -24℃, and -30℃). Based on results from statistical analyses and viscoelasticity, the ratio of asphalt binders and voids and stiffness differences among the three NMAS specimens are not significant, meaning that the impact of asphalt thin beams prepared with the three NMAS on the prediction of thermal cracking is minimal and can be neglected.展开更多
A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special m...A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special modifications and binder blending charts by Asphalt Institute were utilized. Modifications involved the development of a new kind of sample mold and different testing parameters were made to BBR testing procedure to capture the theological properties of bitumen mortars produced by mixing fresh binder with fine RAP materials or RAP aggregate. The stiffness relationship between binder and bitumen mortar was established based on the BBR test results. The blended binder stiffness in bitumen RAP mortar was estimated from the RAP mortar stiffness based on the binder-mortar relationship. And finally, the RAP binder stiffness was estimated from the blended binder and fresh binder stiffness based on the blending charts by Asphalt Institute. The results indicate that the new procedure can capture the rheological properties of bitumen mortar and can be used to estimate the low temperature stiffness of RAP binder without binder extraction and/or any chemical treatments.展开更多
The objective of this paper was to find new modifier to improve the aging resistance and low temperature cracking resistance of asphalt. To investigate the aging resistance of modified asphalt binders, mesoporous nano...The objective of this paper was to find new modifier to improve the aging resistance and low temperature cracking resistance of asphalt. To investigate the aging resistance of modified asphalt binders, mesoporous nano-silica(doping Ti^(4+)) was used as a asphalt modifier. Some physical properties including penetration, ductility, and softening point of asphalt were analyzed with RTFO(Rotating thin film oven) aging and ultraviolet aging. Moreover, the performances of high and low temperature of modified asphalt binders with pressure aging were tested by dynamic shear rheometer(DSR) test and bending beam rheometer(BBR) test. These results showed that the penetration decreased, low temperature ductility, and softening point increased when adding mesoporous nano-silica to base asphalt. After ultraviolet radiation aging, the penetration loss and ductility loss of modified asphalt decreased than that of original asphalt, the increase of softening point was also significantly reduced than that of base asphalt. Furthermore, The test results of DSR and BBR showed that the G*sinδ and creep modulus‘s' of pressure aged asphalt decreased, but the creep rate ‘m' increased. It can be concluded that the aging resistance and cracking resistance of modified asphalt are improved by adding mesoporous nano-silica, especially the doping of Ti^(4+) could improve the aging resistance obviously.展开更多
The low-temperature rheological properties of binders in the recycled asphalt pavement (RAP) material without the damaging effects of solvent extractions were analyzed. The developed procedure is based on testing of...The low-temperature rheological properties of binders in the recycled asphalt pavement (RAP) material without the damaging effects of solvent extractions were analyzed. The developed procedure is based on testing of bitumen-RAP mortars produced by mixing the fresh (virgin) binder with RAP material smaller than # 8 sieve. Different mortars were prepared, containing RAP material passing the #8 sieve and 15% by weight of fresh binder. Low temperature properties of these mortars were investigated by using the bending beam rheometer (BBR) test procedure that is specially modified for testing of the RAP mortars. The modification involved the development of a new kind of mold and different testing parameters. The RAP material used in the experimental study were both extracted from real reclaimed pavement and prepared in the laboratory, by aging binder through repeated PAV cycles. The results indicate the new procedure can capture the effect of aged properties of bitumen in the RAP and can be used to estimate the PG low temperature grade of the blended binder. Although data is limited in size, the modification of the BBR appears to be simple and provide repeatable data.展开更多
文摘The objective of this research is to evaluate an impact of asphalt mixture beams with varying sizes of aggregate in the Bending Beam Rheometer (BBR) for testing/predicting thermal cracking properties of asphalt pavements. The BBR test has following benefits: the equipment is cheaper, it uses smaller specimens, faster conditioning, easier availability for quality control, easier to manage, etc. However some concerns have been raised: some consider that the size of the aggregate may affect the test's results; the other concern is that such small beams cannot represent the whole properties of the asphalt pavement. To address these criticisms, imaging techniques, statistical analysis, and viscoelastic modeling are used. Asphalt thin beams prepared with three different nominal maximum aggregate size (NMAS) (12.5mm, 9.5 mm, and 4.75 mm) were tested at three different temperatures (-18℃, -24℃, and -30℃). Based on results from statistical analyses and viscoelasticity, the ratio of asphalt binders and voids and stiffness differences among the three NMAS specimens are not significant, meaning that the impact of asphalt thin beams prepared with the three NMAS on the prediction of thermal cracking is minimal and can be neglected.
基金Project(200831800044) supported by the Ministry of Communication of ChinaProject(50878054) supported by the National Natural Science Foundation of ChinaProject(06Y31) supported by the Department of Communication of Zhejiang Province,China
文摘A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special modifications and binder blending charts by Asphalt Institute were utilized. Modifications involved the development of a new kind of sample mold and different testing parameters were made to BBR testing procedure to capture the theological properties of bitumen mortars produced by mixing fresh binder with fine RAP materials or RAP aggregate. The stiffness relationship between binder and bitumen mortar was established based on the BBR test results. The blended binder stiffness in bitumen RAP mortar was estimated from the RAP mortar stiffness based on the binder-mortar relationship. And finally, the RAP binder stiffness was estimated from the blended binder and fresh binder stiffness based on the blending charts by Asphalt Institute. The results indicate that the new procedure can capture the rheological properties of bitumen mortar and can be used to estimate the low temperature stiffness of RAP binder without binder extraction and/or any chemical treatments.
基金Funded by the China Scholarship Council(201506375019)
文摘The objective of this paper was to find new modifier to improve the aging resistance and low temperature cracking resistance of asphalt. To investigate the aging resistance of modified asphalt binders, mesoporous nano-silica(doping Ti^(4+)) was used as a asphalt modifier. Some physical properties including penetration, ductility, and softening point of asphalt were analyzed with RTFO(Rotating thin film oven) aging and ultraviolet aging. Moreover, the performances of high and low temperature of modified asphalt binders with pressure aging were tested by dynamic shear rheometer(DSR) test and bending beam rheometer(BBR) test. These results showed that the penetration decreased, low temperature ductility, and softening point increased when adding mesoporous nano-silica to base asphalt. After ultraviolet radiation aging, the penetration loss and ductility loss of modified asphalt decreased than that of original asphalt, the increase of softening point was also significantly reduced than that of base asphalt. Furthermore, The test results of DSR and BBR showed that the G*sinδ and creep modulus‘s' of pressure aged asphalt decreased, but the creep rate ‘m' increased. It can be concluded that the aging resistance and cracking resistance of modified asphalt are improved by adding mesoporous nano-silica, especially the doping of Ti^(4+) could improve the aging resistance obviously.
基金Funded by the National Natural Science Foundation of China (No. 50878054)
文摘The low-temperature rheological properties of binders in the recycled asphalt pavement (RAP) material without the damaging effects of solvent extractions were analyzed. The developed procedure is based on testing of bitumen-RAP mortars produced by mixing the fresh (virgin) binder with RAP material smaller than # 8 sieve. Different mortars were prepared, containing RAP material passing the #8 sieve and 15% by weight of fresh binder. Low temperature properties of these mortars were investigated by using the bending beam rheometer (BBR) test procedure that is specially modified for testing of the RAP mortars. The modification involved the development of a new kind of mold and different testing parameters. The RAP material used in the experimental study were both extracted from real reclaimed pavement and prepared in the laboratory, by aging binder through repeated PAV cycles. The results indicate the new procedure can capture the effect of aged properties of bitumen in the RAP and can be used to estimate the PG low temperature grade of the blended binder. Although data is limited in size, the modification of the BBR appears to be simple and provide repeatable data.